File size: 3,828 Bytes
01903c6 5ecae80 01903c6 95554d6 01903c6 95554d6 01903c6 bf94d78 01903c6 95554d6 bf94d78 01903c6 bf94d78 cdf129c 01903c6 bf94d78 95554d6 5a7123f 95554d6 01903c6 5a7123f 01903c6 95554d6 01903c6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 |
import random
import gradio as gr
import numpy as np
import torch
import spaces
from diffusers import FluxPipeline
from PIL import Image
from diffusers.utils import export_to_gif
HEIGHT = 256
WIDTH = 1024
MAX_SEED = np.iinfo(np.int32).max
device = "cuda" if torch.cuda.is_available() else "cpu"
pipe = FluxPipeline.from_pretrained(
"black-forest-labs/FLUX.1-dev",
torch_dtype=torch.bfloat16
).to(device)
def split_image(input_image, num_splits=4):
# Create a list to store the output images
output_images = []
# Split the image into four 256x256 sections
for i in range(num_splits):
left = i * 256
right = (i + 1) * 256
box = (left, 0, right, 256)
output_images.append(input_image.crop(box))
return output_images
@spaces.GPU(duration=190)
def predict(prompt, seed=42, randomize_seed=False, guidance_scale=5.0, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)):
prompt_template = f"""
A side by side 4 frame image showing consecutive stills from a looped gif moving from left to right.
The gif is of {prompt}.
"""
if randomize_seed:
seed = random.randint(0, MAX_SEED)
image = pipe(
prompt=prompt_template,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
num_images_per_prompt=1,
generator=torch.Generator("cpu").manual_seed(seed),
height=HEIGHT,
width=WIDTH
).images[0]
return export_to_gif(split_image(image, 4), "flux.gif", fps=4), output_stills, seed
demo = gr.Interface(fn=predict, inputs="text", outputs="image")
css="""
#col-container {
margin: 0 auto;
max-width: 520px;
}
#stills{max-height:160px}
"""
examples = [
"a cat waving its paws in the air",
"a panda moving their hips from side to side",
"a flower going through the process of blooming"
]
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown("# FLUX Gif Generator")
gr.Markdown("Create GIFs with Flux-dev. Based on @fofr's [tweet](https://x.com/fofrAI/status/1828910395962343561).")
gr.Markdown("For better results include a description of the motion in your prompt")
with gr.Row():
prompt = gr.Text(label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt")
submit = gr.Button("Submit", scale=0)
output = gr.Image(label="GIF", show_label=False)
output_stills = gr.Image(label="stills", show_label=False, elem_id="stills")
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance Scale",
minimum=1,
maximum=15,
step=0.1,
value=3.5,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=28,
)
gr.Examples(
examples=examples,
fn=predict,
inputs=[prompt],
outputs=[output, output_stills, seed],
cache_examples="lazy"
)
gr.on(
triggers=[submit.click, prompt.submit],
fn=predict,
inputs=[prompt, seed, randomize_seed, guidance_scale, num_inference_steps],
outputs = [output, output_stills, seed]
)
demo.launch() |