import random import gradio as gr import numpy as np import torch import spaces from diffusers import FluxPipeline from PIL import Image from diffusers.utils import export_to_gif HEIGHT = 256 WIDTH = 1024 MAX_SEED = np.iinfo(np.int32).max device = "cuda" if torch.cuda.is_available() else "cpu" pipe = FluxPipeline.from_pretrained( "black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16 ).to(device) def split_image(input_image, num_splits=4): # Create a list to store the output images output_images = [] # Split the image into four 256x256 sections for i in range(num_splits): left = i * 256 right = (i + 1) * 256 box = (left, 0, right, 256) output_images.append(input_image.crop(box)) return output_images @spaces.GPU(duration=190) def predict(prompt, seed=42, randomize_seed=False, guidance_scale=5.0, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)): prompt_template = f""" A side by side 4 frame image showing consecutive stills from a looped gif moving from left to right. The gif is of {prompt}. """ if randomize_seed: seed = random.randint(0, MAX_SEED) image = pipe( prompt=prompt_template, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, num_images_per_prompt=1, generator=torch.Generator("cpu").manual_seed(seed), height=HEIGHT, width=WIDTH ).images[0] return export_to_gif(split_image(image, 4), "flux.gif", fps=4), image, seed demo = gr.Interface(fn=predict, inputs="text", outputs="image") css=""" #col-container { margin: 0 auto; max-width: 520px; } #stills{max-height:160px} """ examples = [ "a cat waving its paws in the air", "a panda moving their hips from side to side", "a flower going through the process of blooming" ] with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): with gr.Row(): prompt = gr.Text(label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt") submit = gr.Button("Submit", scale=0) output = gr.Image(label="GIF", show_label=False) output_stills = gr.Image(label="stills", show_label=False, elem_id="stills") with gr.Accordion("Advanced Settings", open=False): seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) with gr.Row(): guidance_scale = gr.Slider( label="Guidance Scale", minimum=1, maximum=15, step=0.1, value=3.5, ) num_inference_steps = gr.Slider( label="Number of inference steps", minimum=1, maximum=50, step=1, value=28, ) gr.Examples( examples=examples, fn=predict, inputs=[prompt], outputs=[output, output_stills, seed], cache_examples="lazy" ) gr.on( triggers=[submit.click, prompt.submit], fn=predict, inputs=[prompt, seed, randomize_seed, guidance_scale, num_inference_steps], outputs = [output, output_stills, seed] ) demo.launch()