Spaces:
Runtime error
Runtime error
Andreas Lukito
commited on
Commit
·
5e03bd0
1
Parent(s):
ac734e5
Update sample code
Browse files
app.py
CHANGED
@@ -1,7 +1,62 @@
|
|
1 |
import gradio as gr
|
2 |
|
3 |
-
|
4 |
-
|
|
|
5 |
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
|
3 |
+
import torch
|
4 |
+
import re
|
5 |
+
from transformers import DonutProcessor, VisionEncoderDecoderModel
|
6 |
|
7 |
+
def load_and_preprocess_image(image, processor):
|
8 |
+
"""
|
9 |
+
Load an image and preprocess it for the model.
|
10 |
+
"""
|
11 |
+
pixel_values = processor(image, return_tensors="pt").pixel_values
|
12 |
+
return pixel_values
|
13 |
+
|
14 |
+
def generate_text_from_image(model, image, processor, device):
|
15 |
+
"""
|
16 |
+
Generate text from an image using the trained model.
|
17 |
+
"""
|
18 |
+
# Load and preprocess the image
|
19 |
+
pixel_values = load_and_preprocess_image(image, processor)
|
20 |
+
pixel_values = pixel_values.to(device)
|
21 |
+
|
22 |
+
# Generate output using model
|
23 |
+
model.eval()
|
24 |
+
with torch.no_grad():
|
25 |
+
task_prompt = "<s_receipt>" # <s_cord-v2> for v1
|
26 |
+
decoder_input_ids = processor.tokenizer(task_prompt, add_special_tokens=False, return_tensors="pt").input_ids
|
27 |
+
decoder_input_ids = decoder_input_ids.to(device)
|
28 |
+
generated_outputs = model.generate(
|
29 |
+
pixel_values,
|
30 |
+
decoder_input_ids=decoder_input_ids,
|
31 |
+
max_length=model.decoder.config.max_position_embeddings,
|
32 |
+
pad_token_id=processor.tokenizer.pad_token_id,
|
33 |
+
eos_token_id=processor.tokenizer.eos_token_id,
|
34 |
+
early_stopping=True,
|
35 |
+
bad_words_ids=[[processor.tokenizer.unk_token_id]],
|
36 |
+
return_dict_in_generate=True
|
37 |
+
)
|
38 |
+
|
39 |
+
# Decode generated output
|
40 |
+
decoded_text = processor.batch_decode(generated_outputs.sequences)[0]
|
41 |
+
decoded_text = decoded_text.replace(processor.tokenizer.eos_token, "").replace(processor.tokenizer.pad_token, "")
|
42 |
+
decoded_text = re.sub(r"<.*?>", "", decoded_text, count=1).strip() # remove first task start token
|
43 |
+
decoded_text = processor.token2json(decoded_text)
|
44 |
+
return decoded_text
|
45 |
+
|
46 |
+
|
47 |
+
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
|
48 |
+
processor = DonutProcessor.from_pretrained("AdamCodd/donut-receipts-extract")
|
49 |
+
model = VisionEncoderDecoderModel.from_pretrained("AdamCodd/donut-receipts-extract")
|
50 |
+
model.to(device)
|
51 |
+
|
52 |
+
|
53 |
+
def process_image(image):
|
54 |
+
extracted_text = generate_text_from_image(model, image, processor, device)
|
55 |
+
return extracted_text
|
56 |
+
|
57 |
+
|
58 |
+
image = gr.Image(type='pil')
|
59 |
+
label = gr.Label()
|
60 |
+
|
61 |
+
intf = gr.Interface(fn=process_image, inputs=image, outputs=label)
|
62 |
+
intf.launch(inline=False)
|