import gradio as gr import torch import re from transformers import DonutProcessor, VisionEncoderDecoderModel def load_and_preprocess_image(image, processor): """ Load an image and preprocess it for the model. """ pixel_values = processor(image, return_tensors="pt").pixel_values return pixel_values def generate_text_from_image(model, image, processor, device): """ Generate text from an image using the trained model. """ # Load and preprocess the image pixel_values = load_and_preprocess_image(image, processor) pixel_values = pixel_values.to(device) # Generate output using model model.eval() with torch.no_grad(): task_prompt = "" # for v1 decoder_input_ids = processor.tokenizer(task_prompt, add_special_tokens=False, return_tensors="pt").input_ids decoder_input_ids = decoder_input_ids.to(device) generated_outputs = model.generate( pixel_values, decoder_input_ids=decoder_input_ids, max_length=model.decoder.config.max_position_embeddings, pad_token_id=processor.tokenizer.pad_token_id, eos_token_id=processor.tokenizer.eos_token_id, early_stopping=True, bad_words_ids=[[processor.tokenizer.unk_token_id]], return_dict_in_generate=True ) # Decode generated output decoded_text = processor.batch_decode(generated_outputs.sequences)[0] decoded_text = decoded_text.replace(processor.tokenizer.eos_token, "").replace(processor.tokenizer.pad_token, "") decoded_text = re.sub(r"<.*?>", "", decoded_text, count=1).strip() # remove first task start token decoded_text = processor.token2json(decoded_text) return decoded_text device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') processor = DonutProcessor.from_pretrained("AdamCodd/donut-receipts-extract") model = VisionEncoderDecoderModel.from_pretrained("AdamCodd/donut-receipts-extract") model.to(device) def process_image(image): extracted_text = generate_text_from_image(model, image, processor, device) print("Extracted Text:", extracted_text) return extracted_text image = gr.Image(type='pil') label = gr.JSON() intf = gr.Interface(fn=process_image, inputs=image, outputs=label) intf.launch(inline=False)