File size: 6,947 Bytes
f6aec2d ca78baa f6aec2d ca78baa f6aec2d ca78baa f6aec2d ca78baa f6aec2d 8f8b860 f6aec2d 75d3b30 f6aec2d ca78baa f6aec2d 07850ea ca78baa 07850ea f6aec2d ca78baa f6aec2d 2377601 f6aec2d ca78baa f6aec2d ca78baa f6aec2d ca78baa f6aec2d ca78baa f6aec2d bde0dbe 0cc19e7 f6aec2d a46b4c4 e30a182 a46b4c4 f6aec2d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 |
import json
import logging
import os
import urllib.parse
from typing import Any
import gradio as gr
import requests
from gradio_huggingfacehub_search import HuggingfaceHubSearch
from huggingface_hub.repocard import CardData, RepoCard
logger = logging.getLogger(__name__)
example = HuggingfaceHubSearch().example_value()
def get_iframe(hub_repo_id, sql_query=None):
if not hub_repo_id:
raise ValueError("Hub repo id is required")
if sql_query:
sql_query = urllib.parse.quote(sql_query)
url = f"https://huggingface.co/datasets/{hub_repo_id}/embed/viewer?sql_console=true&sql={sql_query}"
else:
url = f"https://huggingface.co/datasets/{hub_repo_id}/embed/viewer"
iframe = f"""
<iframe
src="{url}"
frameborder="0"
width="100%"
height="800px"
></iframe>
"""
return iframe
def get_table_info(hub_repo_id):
url: str = f"https://datasets-server.huggingface.co/info?dataset={hub_repo_id}"
response = requests.get(url)
try:
data = response.json()
data = data.get("dataset_info")
return json.dumps(data)
except Exception as e:
gr.Error(f"Error getting column info: {e}")
def get_table_name(config: str | None, split: str | None, config_choices: list[str], split_choices: list[str]):
if len(config_choices) > 0 and config is None:
config = config_choices[0]
if len(split_choices) > 0 and split is None:
split = split_choices[0]
if len(config_choices) > 1 and len(split_choices) > 1:
base_name = f"{config}_{split}"
elif len(config_choices) >= 1 and len(split_choices) <= 1:
base_name = config
else:
base_name = split
def replace_char(c):
if c.isalnum():
return c
if c in ["-", "_", "/"]:
return "_"
return ""
table_name = "".join(
replace_char(c) for c in base_name
)
if table_name[0].isdigit():
table_name = f"_{table_name}"
return table_name.lower()
def get_prompt_messages(card_data: dict[str, Any], natural_language_query: str):
config_choices = get_config_choices(card_data)
split_choices = get_split_choices(card_data)
chosen_config = config_choices[0] if len(config_choices) > 0 else None
chosen_split = split_choices[0] if len(split_choices) > 0 else None
table_name = get_table_name(chosen_config, chosen_split, config_choices, split_choices)
features = card_data[chosen_config]["features"]
messages = [
{
"role": "system",
"content": "You are a SQL query expert assistant that returns a DuckDB SQL queries based on the user's natural language query and dataset features. You might need to use DuckDB functions for lists and aggregations, given the features. Only return the SQL query, no other text.",
},
{
"role": "user",
"content": f"""table {table_name}
# Features
{features}
# Query
{natural_language_query}
""",
},
]
return messages
def get_config_choices(card_data: dict[str, Any]) -> list[str]:
return list(card_data.keys())
def get_split_choices(card_data: dict[str, Any]) -> list[str]:
splits = set()
for config in card_data.values():
splits.update(config.get("splits", {}).keys())
return list(splits)
def query_dataset(hub_repo_id, card_data, query):
card_data = json.loads(card_data)
messages = get_prompt_messages(card_data, query)
api_key = os.environ["API_KEY_TOGETHER_AI"].strip()
response = requests.post(
"https://api.together.xyz/v1/chat/completions",
json=dict(
model="meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo",
messages=messages,
max_tokens=1000,
),
headers={"Authorization": f"Bearer {api_key}"},
)
if response.status_code != 200:
logger.warning(response.text)
try:
response.raise_for_status()
except Exception as e:
gr.Error(f"Could not query LLM for suggestion: {e}")
response_dict = response.json()
duck_query = response_dict["choices"][0]["message"]["content"]
duck_query = _sanitize_duck_query(duck_query)
return duck_query, get_iframe(hub_repo_id, duck_query)
def _sanitize_duck_query(duck_query: str) -> str:
# Sometimes the LLM wraps the query like this:
# ```sql
# select * from x;
# ```
# This removes that wrapping if present.
if "```" not in duck_query:
return duck_query
start_idx = duck_query.index("```") + len("```")
end_idx = duck_query.rindex("```")
duck_query = duck_query[start_idx:end_idx]
if duck_query.startswith("sql\n"):
duck_query = duck_query.replace("sql\n", "", 1)
return duck_query
with gr.Blocks() as demo:
gr.Markdown("""# π₯ π¦ π€ Text To SQL Hub Datasets π€ π¦ π₯
This is a basic text to SQL tool that allows you to query datasets on Huggingface Hub.
It is built with [DuckDB](https://duckdb.org/), [Huggingface's Inference API](https://huggingface.co/docs/api-inference/index), and [LLama 3.1 70B](https://huggingface.co/meta-llama/Meta-Llama-3.1-70B-Instruct).
Also, it uses the [dataset-server API](https://redocly.github.io/redoc/?url=https://datasets-server.huggingface.co/openapi.json#operation/isValidDataset).
""")
with gr.Row():
search_in = HuggingfaceHubSearch(
label="Search Huggingface Hub",
placeholder="Search for models on Huggingface",
search_type="dataset",
sumbit_on_select=True,
)
with gr.Row():
query = gr.Textbox(
label="Natural Language Query",
placeholder="Enter a natural language query to generate SQL",
)
sql_out = gr.Code(
label="DuckDB SQL Query",
interactive=True,
language="sql",
lines=1,
visible=False,
)
@gr.render(triggers=[search_in.submit])
def show_config_split_choices():
with gr.Row():
with gr.Column():
btn = gr.Button("Show Dataset")
with gr.Column():
btn2 = gr.Button("Query Dataset")
with gr.Row():
search_out = gr.HTML(label="Search Results")
with gr.Row():
card_data = gr.Code(label="Card data", language="json", visible=False)
gr.on(
[btn.click, search_in.submit],
fn=get_iframe,
inputs=[search_in],
outputs=[search_out],
).then(
fn=get_table_info,
inputs=[search_in],
outputs=[card_data],
)
gr.on(
[btn2.click, query.submit],
fn=query_dataset,
inputs=[search_in, card_data, query],
outputs=[sql_out, search_out],
)
if __name__ == "__main__":
demo.launch()
|