File size: 6,947 Bytes
f6aec2d
ca78baa
f6aec2d
 
ca78baa
f6aec2d
 
 
 
ca78baa
f6aec2d
 
ca78baa
 
f6aec2d
 
 
8f8b860
 
f6aec2d
 
 
 
 
 
 
 
 
 
75d3b30
f6aec2d
 
 
 
 
ca78baa
f6aec2d
 
07850ea
 
 
ca78baa
07850ea
 
f6aec2d
 
ca78baa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f6aec2d
 
 
2377601
f6aec2d
 
 
ca78baa
f6aec2d
 
 
 
ca78baa
f6aec2d
 
 
ca78baa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f6aec2d
ca78baa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f6aec2d
 
 
bde0dbe
0cc19e7
 
 
 
 
f6aec2d
a46b4c4
 
 
 
 
 
e30a182
a46b4c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f6aec2d
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
import json
import logging
import os
import urllib.parse
from typing import Any

import gradio as gr
import requests
from gradio_huggingfacehub_search import HuggingfaceHubSearch
from huggingface_hub.repocard import CardData, RepoCard


logger = logging.getLogger(__name__)
example = HuggingfaceHubSearch().example_value()


def get_iframe(hub_repo_id, sql_query=None):
    if not hub_repo_id:
        raise ValueError("Hub repo id is required")
    if sql_query:
        sql_query = urllib.parse.quote(sql_query)
        url = f"https://huggingface.co/datasets/{hub_repo_id}/embed/viewer?sql_console=true&sql={sql_query}"
    else:
        url = f"https://huggingface.co/datasets/{hub_repo_id}/embed/viewer"
    iframe = f"""
    <iframe
  src="{url}"
  frameborder="0"
  width="100%"
  height="800px"
></iframe>
"""
    return iframe


def get_table_info(hub_repo_id):
    url: str = f"https://datasets-server.huggingface.co/info?dataset={hub_repo_id}"
    response = requests.get(url)
    try:
        data = response.json()
        data = data.get("dataset_info")
        return json.dumps(data)
    except Exception as e:
        gr.Error(f"Error getting column info: {e}")


def get_table_name(config: str | None, split: str | None, config_choices: list[str], split_choices: list[str]):
    if len(config_choices) > 0 and config is None:
        config = config_choices[0]
    if len(split_choices) > 0 and split is None:
        split = split_choices[0]

    if len(config_choices) > 1 and len(split_choices) > 1:
        base_name = f"{config}_{split}"
    elif len(config_choices) >= 1 and len(split_choices) <= 1:
        base_name = config
    else:
        base_name = split

    def replace_char(c):
        if c.isalnum():
            return c
        if c in ["-", "_", "/"]:
            return "_"
        return ""
    
    table_name = "".join(
        replace_char(c) for c in base_name
    )
    if table_name[0].isdigit():
        table_name = f"_{table_name}"
    return table_name.lower()


def get_prompt_messages(card_data: dict[str, Any], natural_language_query: str):
    config_choices = get_config_choices(card_data)
    split_choices = get_split_choices(card_data)

    chosen_config = config_choices[0] if len(config_choices) > 0 else None
    chosen_split = split_choices[0] if len(split_choices) > 0 else None
    table_name = get_table_name(chosen_config, chosen_split, config_choices, split_choices)
    features = card_data[chosen_config]["features"]
    messages = [
        {
            "role": "system",
            "content": "You are a SQL query expert assistant that returns a DuckDB SQL queries based on the user's natural language query and dataset features. You might need to use DuckDB functions for lists and aggregations, given the features. Only return the SQL query, no other text.",
        },
        {
            "role": "user",
            "content": f"""table {table_name}
# Features
{features}

# Query
{natural_language_query}
""",
        },
    ]
    return messages


def get_config_choices(card_data: dict[str, Any]) -> list[str]:
    return list(card_data.keys())


def get_split_choices(card_data: dict[str, Any]) -> list[str]:
    splits = set()
    for config in card_data.values():
        splits.update(config.get("splits", {}).keys())

    return list(splits)


def query_dataset(hub_repo_id, card_data, query):
    card_data = json.loads(card_data)
    messages = get_prompt_messages(card_data, query)
    api_key = os.environ["API_KEY_TOGETHER_AI"].strip()
    response = requests.post(
        "https://api.together.xyz/v1/chat/completions",
        json=dict(
            model="meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo",
            messages=messages,
            max_tokens=1000,
        ),
        headers={"Authorization": f"Bearer {api_key}"},
    )

    if response.status_code != 200:
        logger.warning(response.text)

    try:
        response.raise_for_status()
    except Exception as e:
        gr.Error(f"Could not query LLM for suggestion: {e}")

    response_dict = response.json()
    duck_query = response_dict["choices"][0]["message"]["content"]
    duck_query = _sanitize_duck_query(duck_query)
    return duck_query, get_iframe(hub_repo_id, duck_query)

def _sanitize_duck_query(duck_query: str) -> str:
    # Sometimes the LLM wraps the query like this:
    # ```sql
    # select * from x;
    # ```
    # This removes that wrapping if present.
    if "```" not in duck_query:
        return duck_query
    start_idx = duck_query.index("```") + len("```")
    end_idx = duck_query.rindex("```")
    duck_query = duck_query[start_idx:end_idx]
    if duck_query.startswith("sql\n"):
        duck_query = duck_query.replace("sql\n", "", 1)
    return duck_query


with gr.Blocks() as demo:
    gr.Markdown("""# πŸ₯ πŸ¦™ πŸ€— Text To SQL Hub Datasets πŸ€— πŸ¦™ πŸ₯

                This is a basic text to SQL tool that allows you to query datasets on Huggingface Hub.
                It is built with [DuckDB](https://duckdb.org/), [Huggingface's Inference API](https://huggingface.co/docs/api-inference/index), and [LLama 3.1 70B](https://huggingface.co/meta-llama/Meta-Llama-3.1-70B-Instruct).
                Also, it uses the [dataset-server API](https://redocly.github.io/redoc/?url=https://datasets-server.huggingface.co/openapi.json#operation/isValidDataset).
                """)
    with gr.Row():
        search_in = HuggingfaceHubSearch(
            label="Search Huggingface Hub",
            placeholder="Search for models on Huggingface",
            search_type="dataset",
            sumbit_on_select=True,
        )
    with gr.Row():
        query = gr.Textbox(
            label="Natural Language Query",
            placeholder="Enter a natural language query to generate SQL",
        )
        sql_out = gr.Code(
            label="DuckDB SQL Query",
            interactive=True,
            language="sql",
            lines=1,
            visible=False,
        )

    @gr.render(triggers=[search_in.submit])
    def show_config_split_choices():
        with gr.Row():
            with gr.Column():
                btn = gr.Button("Show Dataset")
            with gr.Column():
                btn2 = gr.Button("Query Dataset")
        with gr.Row():
            search_out = gr.HTML(label="Search Results")
        with gr.Row():
            card_data = gr.Code(label="Card data", language="json", visible=False)
        gr.on(
            [btn.click, search_in.submit],
            fn=get_iframe,
            inputs=[search_in],
            outputs=[search_out],
        ).then(
            fn=get_table_info,
            inputs=[search_in],
            outputs=[card_data],
        )
        gr.on(
            [btn2.click, query.submit],
            fn=query_dataset,
            inputs=[search_in, card_data, query],
            outputs=[sql_out, search_out],
        )

if __name__ == "__main__":
    demo.launch()