File size: 29,311 Bytes
0876906 6654499 0876906 6654499 0876906 6654499 0876906 6654499 0876906 f87988c 0876906 203cc33 f87988c 203cc33 0876906 203cc33 0876906 203cc33 0876906 203cc33 0876906 1291e3d 0876906 1291e3d 0876906 203cc33 0876906 203cc33 0876906 736c9cf 0876906 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 |
import streamlit as st
import plotly.graph_objects as go
from transformers import pipeline
import re
import time
import requests
from PIL import Image
import itertools
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.colors import rgb2hex
import matplotlib
from matplotlib.colors import ListedColormap, rgb2hex
import ipywidgets as widgets
from IPython.display import display, HTML
import re
import pandas as pd
from pprint import pprint
from tenacity import retry
from tqdm import tqdm
import tiktoken
import scipy.stats
import inseq
import torch
from transformers import AutoModelForCausalLM
from transformers import GPT2LMHeadModel
import tiktoken
import seaborn as sns
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
# from colorama import Fore, Style
import openai # for OpenAI API calls
######################################
def find_indices(arr, target):
indices = []
start_index = None
for i, element in enumerate(arr):
if target in element:
if start_index is None:
start_index = i
else:
indices.append((start_index, i - 1))
start_index = i
if start_index is not None:
indices.append((start_index, len(arr) - 1))
return indices
######################################
import streamlit as st
def colorize_tokens(token_data, sentence):
colored_sentence = ""
start = 0
for token in token_data:
entity_group = token["entity_group"]
word = token["word"]
tag = f"[{entity_group}]"
tag_color = tag_colors.get(entity_group, "white") # Default to white if color not found
colored_chunk = f'<span style="color:black;background-color:{tag_color}">{word} {tag}</span>'
colored_sentence += sentence[start:token["start"]] + colored_chunk
start = token["end"]
# Add the remaining part of the sentence
colored_sentence += sentence[start:]
return colored_sentence
# Define colors for the tags
tag_colors = {
"ADJP": "#8F6B9F", # Blue
"ADVP": "#7275A7", # Green
"CONJP": "#5BA4BB", # Red
"INTJ": "#95CA73", # Cyan
"LST": "#DFDA70", # Magenta
"NP": "#EFBC65", # Yellow
"PP": "#FC979B", # Purple
"PRT": "#F1C5C1", # Dark Blue
"SBAR": "#FAEBE8", # Dark Green
"VP": "#90DFD2", # Dark Cyan
}
##################
###################
def generate_tagged_sentence(sentence, entity_tags):
# Create a list to hold the tagged tokens
tagged_tokens = []
# Process the entity tags to annotate the sentence
for tag in entity_tags:
start = tag['start']
end = tag['end']
if end<len(sentence)-1:
token = sentence[start:end] # Adjust for 0-based indexing
else:
token = sentence[start:end+1]
tag_name = f"[{tag['entity_group']}]"
tagged_tokens.append(f"{token} {tag_name}")
# Return the tagged sentence
return " ".join(tagged_tokens)
def replace_pp_with_pause(sentence, entity_tags):
# Create a list to hold the tagged tokens
tagged_tokens = []
# Process the entity tags to replace [PP] with [PAUSE]
for tag in entity_tags:
start = tag['start']
end = tag['end']
if end < len(sentence) - 1:
token = sentence[start:end] # Adjust for 0-based indexing
else:
token = sentence[start:end + 1]
tag_name = '[PAUSE]' if tag['entity_group'] == 'PP' else ''
tagged_tokens.append(f"{token}{tag_name}")
print(tagged_tokens)
# Return the sentence with [PAUSE] replacement and spaces preserved
modified_words = []
for i, word in enumerate(tagged_tokens):
if word.startswith("'s"):
modified_words[-1] = modified_words[-1] + word
else:
modified_words.append(word)
output = " ".join(modified_words)
return output
def get_split_sentences(sentence, entity_tags):
split_sentences = []
# Initialize a variable to hold the current sentence
current_sentence = []
# Process the entity tags to split the sentence
for tag in entity_tags:
if tag['entity_group'] == 'PP':
start = tag['start']
end = tag['end']
if end<len(sentence)-1:
token = sentence[start:end] # Adjust for 0-based indexing
else:
token = sentence[start:end+1]
current_sentence.append(token)
split_sentences.append(" ".join(current_sentence))
current_sentence = [] # Reset the current sentence
else:
start = tag['start']
end = tag['end']
if end<len(sentence)-1:
token = sentence[start:end] # Adjust for 0-based indexing
else:
token = sentence[start:end+1]
current_sentence.append(token)
# If the sentence ends without a [PAUSE] token, add the final sentence
if current_sentence:
split_sentences.append("".join(current_sentence))
return split_sentences
##################
######################################
st.set_page_config(page_title="Hallucination", layout="wide")
st.title(':blue[Sorry come again! This time slowly, please]')
st.header("Rephrasing LLM Prompts for Better Comprehension Reduces :blue[Hallucination]")
############################
video_file1 = open('machine.mp4', 'rb')
video_file2 = open('Pause 3 Out1.mp4', 'rb')
video_bytes1 = video_file1.read()
video_bytes2 = video_file2.read()
col1a, col1b = st.columns(2)
with col1a:
st.caption("Original")
st.video(video_bytes1)
with col1b:
st.caption("Paraphrased and added [PAUSE]")
st.video(video_bytes2)
#############################
HF_SPACES_API_KEY = st.secrets["HF_token"]
#API_URL = "https://api-inference.huggingface.co/models/openlm-research/open_llama_3b"
API_URL = "https://api-inference.huggingface.co/models/bigscience/bloom"
headers = {"Authorization": HF_SPACES_API_KEY}
def query(payload):
response = requests.post(API_URL, headers=headers, json=payload)
return response.json()
API_URL_chunk = "https://api-inference.huggingface.co/models/flair/chunk-english"
def query_chunk(payload):
response = requests.post(API_URL_chunk, headers=headers, json=payload)
return response.json()
from tenacity import (
retry,
stop_after_attempt,
wait_random_exponential,
) # for exponential backoff
# openai.api_key = f"{st.secrets['OpenAI_API']}"
# model_engine = "gpt-4"
# @retry(wait=wait_random_exponential(min=1, max=60), stop=stop_after_attempt(6))
# def get_answers(prompt):
# completion = openai.ChatCompletion.create(
# model = 'gpt-3.5-turbo',
# messages = [
# {'role': 'user', 'content': prompt}
# ],
# temperature = 0,max_tokens= 200,
# )
# return completion['choices'][0]['message']['content']
prompt = '''Generate a story from the given text.
Text : '''
# paraphrase_prompt = '''Rephrase the given text: '''
# _gpt3tokenizer = tiktoken.get_encoding("cl100k_base")
##########################
# def render_heatmap(original_text, importance_scores_df):
# # Extract the importance scores
# importance_values = importance_scores_df['importance_value'].values
# # Check for division by zero during normalization
# min_val = np.min(importance_values)
# max_val = np.max(importance_values)
# if max_val - min_val != 0:
# normalized_importance_values = (importance_values - min_val) / (max_val - min_val)
# else:
# normalized_importance_values = np.zeros_like(importance_values) # Fallback: all-zero array
# # Generate a colormap for the heatmap
# cmap = matplotlib.colormaps['inferno']
# # Function to determine text color based on background color
# def get_text_color(bg_color):
# brightness = 0.299 * bg_color[0] + 0.587 * bg_color[1] + 0.114 * bg_color[2]
# if brightness < 0.5:
# return 'white'
# else:
# return 'black'
# # Initialize pointers for the original text and token importance
# original_pointer = 0
# token_pointer = 0
# # Create an HTML representation
# html = ""
# while original_pointer < len(original_text):
# token = importance_scores_df.loc[token_pointer, 'token']
# if original_pointer == original_text.find(token, original_pointer):
# importance = normalized_importance_values[token_pointer]
# rgba = cmap(importance)
# bg_color = rgba[:3]
# text_color = get_text_color(bg_color)
# html += f'<span style="background-color: rgba({int(bg_color[0]*255)}, {int(bg_color[1]*255)}, {int(bg_color[2]*255)}, 1); color: {text_color};">{token}</span>'
# original_pointer += len(token)
# token_pointer += 1
# else:
# html += original_text[original_pointer]
# original_pointer += 1
# #display(HTML(html))
# st.markdown(html, unsafe_allow_html=True)
def render_heatmap(original_text, importance_scores_df):
# Extract the importance scores
importance_values = importance_scores_df['importance_value'].values
# Check for division by zero during normalization
min_val = np.min(importance_values)
max_val = np.max(importance_values)
if max_val - min_val != 0:
normalized_importance_values = (importance_values - min_val) / (max_val - min_val)
else:
normalized_importance_values = np.zeros_like(importance_values) # Fallback: all-zero array
# Generate a colormap for the heatmap (use "Blues")
cmap = matplotlib.cm.get_cmap('Blues')
# Function to determine text color based on background color
def get_text_color(bg_color):
brightness = 0.299 * bg_color[0] + 0.587 * bg_color[1] + 0.114 * bg_color[2]
if brightness < 0.5:
return 'white'
else:
return 'black'
# Initialize pointers for the original text and token importance
original_pointer = 0
token_pointer = 0
# Create an HTML representation
html = ""
while original_pointer < len(original_text):
token = importance_scores_df.loc[token_pointer, 'token']
if original_pointer == original_text.find(token, original_pointer):
importance = normalized_importance_values[token_pointer]
rgba = cmap(importance)
bg_color = rgba[:3]
text_color = get_text_color(bg_color)
html += f'<span style="background-color: rgba({int(bg_color[0]*255)}, {int(bg_color[1]*255)}, {int(bg_color[2]*255)}, 1); color: {text_color};">{token}</span>'
original_pointer += len(token)
token_pointer += 1
else:
html += original_text[original_pointer]
original_pointer += 1
st.markdown(html, unsafe_allow_html=True)
##########################
# Create selectbox
prompt_list=["Which individuals possessed the ships that were part of the Boston Tea Party?",
"Freddie Frith", "Robert used PDF for his math homework."
]
options = [f"Prompt #{i+1}: {prompt_list[i]}" for i in range(3)] + ["Another Prompt..."]
selection = st.selectbox("Choose a prompt from the dropdown below . Click on :blue['Another Prompt...'] , if you want to enter your own custom prompt.", options=options)
check=[]
# if selection == "Another Prompt...":
# otherOption = st.text_input("Enter your custom prompt...")
# if otherOption:
# st.caption(f""":white_check_mark: Your input prompt is : {otherOption}""")
# st.caption(':green[Kindly hold on for a few minutes while the AI text is being generated]')
# check=otherOption
# st.caption(f"""{check}""")
# else:
# result = re.split(r'#\d+:', selection, 1)
# if result:
# st.caption(f""":white_check_mark: Your input prompt is : {result[1]}""")
# st.caption(':green[Kindly hold on for a few minutes while the AI text is being generated]')
# check=result[1]
if selection == "Another Prompt...":
check = st.text_input("Enter your custom prompt...")
check = " " + check
if check:
st.caption(f""":white_check_mark: Your input prompt is : {check}""")
st.caption(':green[Kindly hold on for a few minutes while the AI text is being generated]')
# check=otherOption
# st.caption(f"""{check}""")
else:
check = re.split(r'#\d+:', selection, 1)[1]
if check:
st.caption(f""":white_check_mark: Your input prompt is : {check}""")
st.caption(':green[Kindly hold on for a few minutes while the AI text is being generated]')
# check=result[1]
# @st.cache_data
def load_chunk_model(check):
iden=['error']
while 'error' in iden:
time.sleep(1)
try:
output = query_chunk({"inputs": f"""{check}""",})
iden = output # Update 'check' with the new result
except Exception as e:
print(f"An exception occurred: {e}")
return output
##################################
# st.write(entity_tags)
##################################
# colored_output, _ = colorize_tokens(load_chunk_model(check),check)
# st.caption('The below :blue[NER] tags are found for orginal prompt:')
# st.markdown(colored_output, unsafe_allow_html=True)
# @st.cache_resource
def load_text_gen_model(check):
iden=['error']
while 'error' in iden:
time.sleep(1)
try:
output = query({
"inputs": f"""{check}""",
"parameters": {
"min_new_tokens": 30,
"max_new_tokens": 100,
"do_sample":True,
#"remove_invalid_values" : True
#"temperature" :0.6
# "top_k":1
# "num_beams":2,
# "no_repeat_ngram_size":2,
# "early_stopping":True
}
})
iden = output # Update 'check' with the new result
except Exception as e:
print(f"An exception occurred: {e}")
return output[0]['generated_text']
# @st.cache_data
# def load_text_gen_model(check):
# return get_answers(prompt + check)
def decoded_tokens(string, tokenizer):
return [tokenizer.decode([x]) for x in tokenizer.encode(string)]
# def analyze_heatmap(df):
# sns.set_palette(sns.color_palette("viridis"))
# # Create a copy of the DataFrame to prevent modification of the original
# df_copy = df.copy()
# # Ensure DataFrame has the required columns
# if 'token' not in df_copy.columns or 'importance_value' not in df_copy.columns:
# raise ValueError("The DataFrame must contain 'token' and 'importance_value' columns.")
# # Add 'Position' column to the DataFrame copy
# df_copy['Position'] = range(len(df_copy))
# # Plot a bar chart for importance score per token
# plt.figure(figsize=(len(df_copy) * 0.3, 4))
# sns.barplot(x='token', y='importance_value', data=df_copy)
# plt.xticks(rotation=45, ha='right')
# plt.title('Importance Score per Token')
# return plt
# #plt.show()
# ###########################
# def analyze_heatmap(df_input):
# df = df_input.copy()
# df["Position"] = range(len(df))
# # Get the viridis colormap
# viridis = matplotlib.cm.get_cmap("viridis")
# # Create a Matplotlib figure and axis
# fig, ax = plt.subplots(figsize=(10, 6))
# # Normalize the importance values
# min_val = df["importance_value"].min()
# max_val = df["importance_value"].max()
# normalized_values = (df["importance_value"] - min_val) / (max_val - min_val)
# # Create the bars, colored based on normalized importance_value
# for i, (token, norm_value) in enumerate(zip(df["token"], normalized_values)):
# color = viridis(norm_value)
# ax.bar(
# x=[i], # Use index for x-axis
# height=[df["importance_value"].iloc[i]],
# width=1.0, # Set the width to make bars touch each other
# color=[color],
# )
# # Additional styling
# ax.set_title("Importance Score per Token", size=25)
# ax.set_xlabel("Token")
# ax.set_ylabel("Importance Value")
# ax.set_xticks(range(len(df["token"])))
# ax.set_xticklabels(df["token"], rotation=45)
# return fig
@st.cache_data
def analyze_heatmap(df_input):
df = df_input.copy()
df["Position"] = range(len(df))
# Get the Blues colormap
blues = matplotlib.cm.get_cmap("Blues")
# Create a Matplotlib figure and axis
fig, ax = plt.subplots(figsize=(10, 6))
# Normalize the importance values
min_val = df["importance_value"].min()
max_val = df["importance_value"].max()
normalized_values = (df["importance_value"] - min_val) / (max_val - min_val)
# Create the bars, colored based on normalized importance_value
for i, (token, norm_value) in enumerate(zip(df["token"], normalized_values)):
color = blues(norm_value)
ax.bar(
x=[i], # Use index for x-axis
height=[df["importance_value"].iloc[i]],
width=1.0, # Set the width to make bars touch each other
color=[color],
)
# Additional styling
# ax.set_title("Importance Score per Token", size=25)
# ax.set_xlabel("Token")
# ax.set_ylabel("Importance Value")
ax.set_xticks(range(len(df["token"])))
ax.set_xticklabels(df["token"], rotation=45)
return fig
# def analyze_heatmap(df_input):
# df = df_input.copy()
# df["Position"] = range(len(df))
# # Get the viridis colormap
# viridis = matplotlib.colormaps["viridis"]
# # Initialize the figure
# fig = go.Figure()
# # Create the histogram bars with viridis coloring
# # Normalize the importance values
# min_val = df["importance_value"].min()
# max_val = df["importance_value"].max()
# normalized_values = (df["importance_value"] - min_val) / (max_val - min_val)
# # Initialize the figure
# fig = go.Figure()
# # Create the bars, colored based on normalized importance_value
# for i, (token, norm_value) in enumerate(zip(df["token"], normalized_values)):
# color = f"rgb({int(viridis(norm_value)[0] * 255)}, {int(viridis(norm_value)[1] * 255)}, {int(viridis(norm_value)[2] * 255)})"
# fig.add_trace(
# go.Bar(
# x=[i], # Use index for x-axis
# y=[df["importance_value"].iloc[i]],
# width=1.0, # Set the width to make bars touch each other
# marker=dict(color=color),
# )
# )
# # Additional styling
# fig.update_layout(
# title=f"Importance Score per Token",
# title_font={'size': 25},
# xaxis_title="Token",
# yaxis_title="Importance Value",
# showlegend=False,
# bargap=0, # Remove gap between bars
# xaxis=dict( # Set tick labels to tokens
# tickmode="array",
# tickvals=list(range(len(df["token"]))),
# ticktext=list(df["token"]),
# ),
# )
# # Rotate x-axis labels by 45 degrees
# fig.update_xaxes(tickangle=45)
# return fig
############################
# @st.cache_data
def integrated_gradients(input_ids, baseline, model, n_steps= 10): #100
# Convert input_ids and baseline to LongTensors
input_ids = input_ids.long()
baseline = baseline.long()
# Initialize tensor to store accumulated gradients
accumulated_grads = None
# Create interpolated inputs
alphas = torch.linspace(0, 1, n_steps)
delta = input_ids - baseline
interpolates = [(baseline + (alpha * delta).long()).long() for alpha in alphas] # Explicitly cast to LongTensor
# Initialize tqdm progress bar
pbar = tqdm(total=n_steps, desc="Calculating Integrated Gradients")
for interpolate in interpolates:
# Update tqdm progress bar
pbar.update(1)
# Convert interpolated samples to embeddings
interpolate_embedding = model.transformer.wte(interpolate).clone().detach().requires_grad_(True)
# Forward pass
output = model(inputs_embeds=interpolate_embedding, output_attentions=False)[0]
# Aggregate the logits across all positions (using sum in this example)
aggregated_logit = output.sum()
# Backward pass to calculate gradients
aggregated_logit.backward()
# Accumulate gradients
if accumulated_grads is None:
accumulated_grads = interpolate_embedding.grad.clone()
else:
accumulated_grads += interpolate_embedding.grad
# Clear gradients
model.zero_grad()
interpolate_embedding.grad.zero_()
# Close tqdm progress bar
pbar.close()
# Compute average gradients
avg_grads = accumulated_grads / n_steps
# Compute attributions
with torch.no_grad():
input_embedding = model.transformer.wte(input_ids)
baseline_embedding = model.transformer.wte(baseline)
attributions = (input_embedding - baseline_embedding) * avg_grads
return attributions
# @st.cache_data
def process_integrated_gradients(input_text, _gpt2tokenizer, model):
inputs = torch.tensor([_gpt2tokenizer.encode(input_text)])
gpt2tokens = decoded_tokens(input_text, _gpt2tokenizer)
with torch.no_grad():
outputs = model(inputs, output_attentions=True, output_hidden_states=True)
attentions = outputs[-1]
# Initialize a baseline as zero tensor
baseline = torch.zeros_like(inputs).long()
# Compute Integrated Gradients targeting the aggregated sequence output
attributions = integrated_gradients(inputs, baseline, model)
# Convert tensors to numpy array for easier manipulation
attributions_np = attributions.detach().numpy().sum(axis=2)
# Sum across the embedding dimensions to get a single attribution score per token
attributions_sum = attributions.sum(axis=2).squeeze(0).detach().numpy()
l2_norm_attributions = np.linalg.norm(attributions_sum, 2)
normalized_attributions_sum = attributions_sum / l2_norm_attributions
clamped_attributions_sum = np.where(normalized_attributions_sum < 0, 0, normalized_attributions_sum)
attribution_df = pd.DataFrame({
'token': gpt2tokens,
'importance_value': clamped_attributions_sum
})
return attribution_df
########################
model_type = 'gpt2'
model_version = 'gpt2'
model = GPT2LMHeadModel.from_pretrained(model_version, output_attentions=True)
_gpt2tokenizer = tiktoken.get_encoding("gpt2")
#######################
para_tokenizer = AutoTokenizer.from_pretrained("humarin/chatgpt_paraphraser_on_T5_base")
para_model = AutoModelForSeq2SeqLM.from_pretrained("humarin/chatgpt_paraphraser_on_T5_base")
######################
@st.cache_resource
def paraphrase(
question,
num_beams=5,
num_beam_groups=5,
num_return_sequences=5,
repetition_penalty=10.0,
diversity_penalty=3.0,
no_repeat_ngram_size=2,
temperature=0.7,
max_length=64 #128
):
input_ids = para_tokenizer(
f'paraphrase: {question}',
return_tensors="pt", padding="longest",
max_length=max_length,
truncation=True,
).input_ids
outputs = para_model.generate(
input_ids, temperature=temperature, repetition_penalty=repetition_penalty,
num_return_sequences=num_return_sequences, no_repeat_ngram_size=no_repeat_ngram_size,
num_beams=num_beams, num_beam_groups=num_beam_groups,
max_length=max_length, diversity_penalty=diversity_penalty
)
res = para_tokenizer.batch_decode(outputs, skip_special_tokens=True)
return res
###########################
class SentenceAnalyzer:
def __init__(self, check, original, _gpt2tokenizer, model):
self.check = check
self.original = original
self._gpt2tokenizer = _gpt2tokenizer
self.model = model
self.entity_tags = load_chunk_model(check)
self.tagged_sentence = generate_tagged_sentence(check, self.entity_tags)
self.sentence_with_pause = replace_pp_with_pause(check, self.entity_tags)
self.split_sentences = get_split_sentences(check, self.entity_tags)
self.colored_output = colorize_tokens(self.entity_tags, check)
def analyze(self):
# st.caption(f"The below :blue[shallow parsing] tags are found for {self.original} prompt:")
# st.markdown(self.colored_output, unsafe_allow_html=True)
attribution_df1 = process_integrated_gradients(self.check, self._gpt2tokenizer, self.model)
st.caption(f":blue[{self.original}]:")
render_heatmap(self.check, attribution_df1)
# st.write("Original")
st.pyplot(analyze_heatmap(attribution_df1))
# st.write("After [PAUSE]")
# st.write("Sentence with [PAUSE] Replacement:", self.sentence_with_pause)
dataframes_list = []
for i, split_sentence in enumerate(self.split_sentences):
# st.write(f"Sentence {i + 1} : {split_sentence}")
attribution_df1 = process_integrated_gradients(split_sentence, self._gpt2tokenizer, self.model)
if i < len(self.split_sentences) - 1:
# Add a row with [PAUSE] and value 0 at the end
pause_row = pd.DataFrame({'token': '[PAUSE]', 'importance_value': 0},index=[len(attribution_df1)])
# pause_row = pd.DataFrame({'', '': 0},index=[len(attribution_df1)])
attribution_df1 = pd.concat([attribution_df1,pause_row], ignore_index=True)
dataframes_list.append(attribution_df1)
# After the loop, you can concatenate the dataframes in the list if needed
if dataframes_list:
combined_dataframe = pd.concat(dataframes_list, axis=0)
combined_dataframe = combined_dataframe[combined_dataframe['token'] != " "].reset_index(drop=True)
combined_dataframe1 = combined_dataframe[combined_dataframe['token'] != "[PAUSE]"]
combined_dataframe1.reset_index(drop=True, inplace=True)
st.write(f"Sentence with [PAUSE] Replacement:")
# st.dataframe(combined_dataframe1)
render_heatmap(self.sentence_with_pause,combined_dataframe1)
# render_heatmap(self.sentence_with_pause,combined_dataframe)
st.pyplot(analyze_heatmap(combined_dataframe))
paraphrase_list=paraphrase(check)
# st.write(paraphrase_list)
######################
col1, col2 = st.columns(2)
with col1:
analyzer = SentenceAnalyzer(check, "Original Prompt", _gpt2tokenizer, model)
analyzer.analyze()
with col2:
ai_gen_text=load_text_gen_model(check)
st.caption(':blue[AI generated text by GPT4]')
st.write(ai_gen_text)
#st.markdown("""<hr style="height:5px;border:none;color:#333;background-color:#333;" /> """, unsafe_allow_html=True)
st.markdown("""<hr style="height:5px;border:none;color:lightblue;background-color:lightblue;" /> """, unsafe_allow_html=True)
col3, col4 = st.columns(2)
with col3:
analyzer = SentenceAnalyzer(" "+paraphrase_list[0], "Paraphrase 1", _gpt2tokenizer, model)
analyzer.analyze()
with col4:
ai_gen_text=load_text_gen_model(paraphrase_list[0])
st.caption(':blue[AI generated text by GPT4]')
st.write(ai_gen_text)
st.markdown("""<hr style="height:5px;border:none;color:lightblue;background-color:skyblue;" /> """, unsafe_allow_html=True)
col5, col6 = st.columns(2)
with col5:
analyzer = SentenceAnalyzer(" "+paraphrase_list[1], "Paraphrase 2", _gpt2tokenizer, model)
analyzer.analyze()
with col6:
ai_gen_text=load_text_gen_model(paraphrase_list[1])
st.caption(':blue[AI generated text by GPT4]')
st.write(ai_gen_text)
st.markdown("""<hr style="height:5px;border:none;color:lightblue;background-color:skyblue;" /> """, unsafe_allow_html=True)
col7, col8 = st.columns(2)
with col7:
analyzer = SentenceAnalyzer(" "+paraphrase_list[2], "Paraphrase 3", _gpt2tokenizer, model)
analyzer.analyze()
with col8:
ai_gen_text=load_text_gen_model(paraphrase_list[2])
st.caption(':blue[AI generated text by GPT4]')
st.write(ai_gen_text)
st.markdown("""<hr style="height:5px;border:none;color:lightblue;background-color:skyblue;" /> """, unsafe_allow_html=True)
col9, col10 = st.columns(2)
with col9:
analyzer = SentenceAnalyzer(" "+paraphrase_list[3], "Paraphrase 4", _gpt2tokenizer, model)
analyzer.analyze()
with col10:
ai_gen_text=load_text_gen_model(paraphrase_list[3])
st.caption(':blue[AI generated text by GPT4]')
st.write(ai_gen_text)
st.markdown("""<hr style="height:5px;border:none;color:lightblue;background-color:skyblue;" /> """, unsafe_allow_html=True)
col11, col12 = st.columns(2)
with col11:
analyzer = SentenceAnalyzer(" "+paraphrase_list[4], "Paraphrase 5", _gpt2tokenizer, model)
analyzer.analyze()
with col12:
ai_gen_text=load_text_gen_model(paraphrase_list[4])
st.caption(':blue[AI generated text by GPT4]')
st.write(ai_gen_text)
|