File size: 7,254 Bytes
6d75b72
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
import torch
import gradio as gr
from PIL import Image
import qrcode


from diffusers import (
    StableDiffusionControlNetImg2ImgPipeline,
    ControlNetModel,
    DDIMScheduler,
    DPMSolverMultistepScheduler,
    DEISMultistepScheduler,
    HeunDiscreteScheduler,
    EulerDiscreteScheduler,
)

controlnet = ControlNetModel.from_pretrained(
    "DionTimmer/controlnet_qrcode-control_v1p_sd15", torch_dtype=torch.float16
)

pipe= StableDiffusionControlNetImg2ImgPipeline.from_pretrained(
    "runwayml/stable-diffusion-v1-5",
    controlnet=controlnet,
    use_safetensors=True,
    torch_dtype=torch.float16,
).to("cuda")


SAMPLER_MAP={
    "DPM++ Karras SDE": lambda config: DPMSolverMultistepScheduler.from_config(config, use_karras=True, algorithm_type="sde-dpmsolver++"),
    "DPM++ Karras": lambda config: DPMSolverMultistepScheduler.from_config(config, use_karras=True),
    "Heun": lambda config: HeunDiscreteScheduler.from_config(config),
    "Euler": lambda config: EulerDiscreteScheduler.from_config(config),
    "DDIM": lambda config: DDIMScheduler.from_config(config),
    "DEIS": lambda config: DEISMultistepScheduler.from_config(config),
}


def inference(
    qr_code_content: str,
    prompt: str,
    negative_prompt: str,
    guidance_scale: float = 10.0,
    controlnet_conditioning_scale: float = 2.0,
    strength: float = 0.8,
    seed: int = -1,
    init_image: Image.Image | None = None,
    qrcode_image: Image.Image | None = None,
    sampler = "DPM++ Karras SDE",
):
    if prompt is None or prompt == "":
        raise gr.Error("Prompt is required")

    if qrcode_image is None and qr_code_content == "":
        raise gr.Error("QR Code Image or QR Code Content is required")

    pipe.scheduler = SAMPLER_MAP[sampler](pipe.scheduler.config)

    generator = torch.manual_seed(seed) if seed != -1 else torch.Generator()

    if qr_code_content != "" or qrcode_image.size == (1, 1):
        qr = qrcode.QRCode(
            version=1,
            error_correction=qrcode.constants.ERROR_CORRECT_H,
            box_size=10,
            border=4,
        )
        qr.add_data(qr_code_content)
        qr.make(fit=True)

        qrcode_image = qr.make_image(fill_color="black", back_color="white")
        qrcode_image = qrcode_image.resize((768, 768))
    else:
        qrcode_image = qrcode_image.resize((768, 768))

    # hack due to gradio examples
    init_image = qrcode_image

    out = pipe(
        prompt=prompt,
        negative_prompt=negative_prompt,
        image=init_image,
        control_image=qrcode_image,  # type: ignore
        width=768,  # type: ignore
        height=768,  # type: ignore
        guidance_scale=float(guidance_scale),
        controlnet_conditioning_scale=float(controlnet_conditioning_scale),  # type: ignore
        generator=generator,
        strength=float(strength),
        num_inference_steps=40,
    )
    return out.images[0]  # type: ignore

def inference_ui_demo():
    return None

# https://www.kaggle.com/code/aisuko/text-to-image-qr-code-generator/notebook
# image=inference(qr_code_content="https://www.kaggle.com/aisuko",
#     prompt="A sky view of a colorful lakes and rivers flowing through the mountains",
#     negative_prompt="ugly, disfigured, low quality, blurry, nsfw",
#     guidance_scale=7.5,
#     controlnet_conditioning_scale=1.3,
#     strength=0.9,
#     seed=5392011833,
#     init_image=None,
#     qrcode_image=None,
#     sampler="DPM++ Karras SDE")

with gr.Blocks() as blocks:
    gr.Markdown(
        """
        # QR Code Image to Image UI Demo

        This code cannot be runable because of the low resource. So, it is aimed to show the the componnets of the UI only.
        
        If you want to run the Code, please go to Kaggle <a href="https://www.kaggle.com/code/aisuko/text-to-image-qr-code-generator/notebook" style="display: inline-block;margin-top: .5em;margin-right: .25em;" target="_blank">
        """
    )

    with gr.Row():
        with gr.Column():
            qrcode_content=gr.Textbox(
                label="QR Code Content",
                info="QR Code Content or URL",
                value="",
            )
            with gr.Accordion(label="QR Code Image (Optional)", open=False):
                qr_code_image=gr.Image(
                    label="QR Code Image (Optional). Leave blank to automatically generate QR Code",
                    type="pil",
                )
            
            prompt=gr.Textbox(
                label="Prompt",
                info="Prompt that guides the generation towards",
            )

            negative_prompt=gr.Textbox(
                label="Negative Prompt",
                value="ugly, disfigured, low quality, blurry, nsfw",
            )

            use_qr_code_as_init_image=gr.Checkbox(
                label="Use QR code as init image",
                value=True,
                interactive=False,
                info="Whether init image should be QR code. Unclick to pass init image or generate init image with Stable Diffusion 1.5"
            )

            with gr.Accordion(label="Init Image (Optional)", open=False) as init_image_acc:
                init_image=gr.Image(
                    label="Init Image (Optional). Leave blank to generate image with SD 1.5",
                    type="pil",
                )

            with gr.Accordion(
                label="Params: The generated QR Code functionality is largely influenced by the parameters detailed below",
                open=True,):

                controlnet_conditioning_scale=gr.Slider(
                    minimum=0.0,
                    maximum=5.0,
                    step=0.1,
                    value=1.1,
                    label="Controlnet Conditioning Scale",
                )
                strength=gr.Slider(
                    minimum=0.0,
                    maximum=1.0,
                    step=0.1,
                    value=0.9,
                    label="Strength",
                )
                guidance_scale=gr.Slider(
                    minimum=0.0,
                    maximum=10.0,
                    step=0.1,
                    value=7.5,
                    label="Guidance Scale",
                )
                sampler=gr.Dropdown(
                    choices=list(SAMPLER_MAP.keys()),
                    value="DPM++ Karras SDE",
                    label="Sampler"
                )
                seed=gr.Slider(
                    minimum=-1,
                    maximum=9999999999,
                    step=1,
                    value=2313123,
                    label="Seed",
                    randomize=True,
                )
            with gr.Row():
                btn=gr.Button("Run")
        with gr.Column():
            result_image=gr.Image(label="Result Image")

    btn.click(
        inference_ui_demo,
        inputs=[
            qrcode_content,
            prompt,
            negative_prompt,
            guidance_scale,
            controlnet_conditioning_scale,
            strength,
            seed,
            init_image,
            qr_code_image,
            sampler,
        ],
        outputs=[result_image],
    )

blocks.queue(concurrency_count=1, max_size=2)
blocks.launch()