Spaces:
Running
Running
File size: 7,330 Bytes
6d75b72 32a1505 6d75b72 32a1505 6d75b72 32a1505 6d75b72 06bb4ad 6d75b72 f969997 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 |
import torch
import gradio as gr
from PIL import Image
import qrcode
from diffusers import (
StableDiffusionControlNetImg2ImgPipeline,
ControlNetModel,
DDIMScheduler,
DPMSolverMultistepScheduler,
DEISMultistepScheduler,
HeunDiscreteScheduler,
EulerDiscreteScheduler,
)
# controlnet = ControlNetModel.from_pretrained(
# "DionTimmer/controlnet_qrcode-control_v1p_sd15", torch_dtype=torch.float16
# )
# pipe= StableDiffusionControlNetImg2ImgPipeline.from_pretrained(
# "runwayml/stable-diffusion-v1-5",
# controlnet=controlnet,
# use_safetensors=True,
# torch_dtype=torch.float16,
# ).to("cuda")
SAMPLER_MAP={
"DPM++ Karras SDE": lambda config: DPMSolverMultistepScheduler.from_config(config, use_karras=True, algorithm_type="sde-dpmsolver++"),
"DPM++ Karras": lambda config: DPMSolverMultistepScheduler.from_config(config, use_karras=True),
"Heun": lambda config: HeunDiscreteScheduler.from_config(config),
"Euler": lambda config: EulerDiscreteScheduler.from_config(config),
"DDIM": lambda config: DDIMScheduler.from_config(config),
"DEIS": lambda config: DEISMultistepScheduler.from_config(config),
}
# def inference(
# qr_code_content: str,
# prompt: str,
# negative_prompt: str,
# guidance_scale: float = 10.0,
# controlnet_conditioning_scale: float = 2.0,
# strength: float = 0.8,
# seed: int = -1,
# init_image: Image.Image | None = None,
# qrcode_image: Image.Image | None = None,
# sampler = "DPM++ Karras SDE",
# ):
# if prompt is None or prompt == "":
# raise gr.Error("Prompt is required")
# if qrcode_image is None and qr_code_content == "":
# raise gr.Error("QR Code Image or QR Code Content is required")
# pipe.scheduler = SAMPLER_MAP[sampler](pipe.scheduler.config)
# generator = torch.manual_seed(seed) if seed != -1 else torch.Generator()
# if qr_code_content != "" or qrcode_image.size == (1, 1):
# qr = qrcode.QRCode(
# version=1,
# error_correction=qrcode.constants.ERROR_CORRECT_H,
# box_size=10,
# border=4,
# )
# qr.add_data(qr_code_content)
# qr.make(fit=True)
# qrcode_image = qr.make_image(fill_color="black", back_color="white")
# qrcode_image = qrcode_image.resize((768, 768))
# else:
# qrcode_image = qrcode_image.resize((768, 768))
# # hack due to gradio examples
# init_image = qrcode_image
# out = pipe(
# prompt=prompt,
# negative_prompt=negative_prompt,
# image=init_image,
# control_image=qrcode_image, # type: ignore
# width=768, # type: ignore
# height=768, # type: ignore
# guidance_scale=float(guidance_scale),
# controlnet_conditioning_scale=float(controlnet_conditioning_scale), # type: ignore
# generator=generator,
# strength=float(strength),
# num_inference_steps=40,
# )
# return out.images[0] # type: ignore
def inference_ui_demo():
return None
# https://www.kaggle.com/code/aisuko/text-to-image-qr-code-generator/notebook
# image=inference(qr_code_content="https://www.kaggle.com/aisuko",
# prompt="A sky view of a colorful lakes and rivers flowing through the mountains",
# negative_prompt="ugly, disfigured, low quality, blurry, nsfw",
# guidance_scale=7.5,
# controlnet_conditioning_scale=1.3,
# strength=0.9,
# seed=5392011833,
# init_image=None,
# qrcode_image=None,
# sampler="DPM++ Karras SDE")
with gr.Blocks() as blocks:
gr.Markdown(
"""
# QR Code Image to Image UI Demo
This code cannot be runable because of the low resource. So, it is aimed to show the the componnets of the UI only.
If you want to run the Code, please go to the Kaggle notebook [https://www.kaggle.com/code/aisuko/text-to-image-qr-code-generator/notebook](https://www.kaggle.com/code/aisuko/text-to-image-qr-code-generator/notebook)
"""
)
with gr.Row():
with gr.Column():
qrcode_content=gr.Textbox(
label="QR Code Content",
info="QR Code Content or URL",
value="",
)
with gr.Accordion(label="QR Code Image (Optional)", open=False):
qr_code_image=gr.Image(
label="QR Code Image (Optional). Leave blank to automatically generate QR Code",
type="pil",
)
prompt=gr.Textbox(
label="Prompt",
info="Prompt that guides the generation towards",
)
negative_prompt=gr.Textbox(
label="Negative Prompt",
value="ugly, disfigured, low quality, blurry, nsfw",
)
use_qr_code_as_init_image=gr.Checkbox(
label="Use QR code as init image",
value=True,
interactive=False,
info="Whether init image should be QR code. Unclick to pass init image or generate init image with Stable Diffusion 1.5"
)
with gr.Accordion(label="Init Image (Optional)", open=False) as init_image_acc:
init_image=gr.Image(
label="Init Image (Optional). Leave blank to generate image with SD 1.5",
type="pil",
)
with gr.Accordion(
label="Params: The generated QR Code functionality is largely influenced by the parameters detailed below",
open=True,):
controlnet_conditioning_scale=gr.Slider(
minimum=0.0,
maximum=5.0,
step=0.1,
value=1.1,
label="Controlnet Conditioning Scale",
)
strength=gr.Slider(
minimum=0.0,
maximum=1.0,
step=0.1,
value=0.9,
label="Strength",
)
guidance_scale=gr.Slider(
minimum=0.0,
maximum=10.0,
step=0.1,
value=7.5,
label="Guidance Scale",
)
sampler=gr.Dropdown(
choices=list(SAMPLER_MAP.keys()),
value="DPM++ Karras SDE",
label="Sampler"
)
seed=gr.Slider(
minimum=-1,
maximum=9999999999,
step=1,
value=2313123,
label="Seed",
randomize=True,
)
with gr.Row():
btn=gr.Button("Run")
with gr.Column():
result_image=gr.Image(label="Result Image")
btn.click(
inference_ui_demo,
inputs=[
qrcode_content,
prompt,
negative_prompt,
guidance_scale,
controlnet_conditioning_scale,
strength,
seed,
init_image,
qr_code_image,
sampler,
],
outputs=[result_image],
)
blocks.launch(max_threads=2) |