import gradio as gr import os from queue import SimpleQueue from langchain.callbacks.manager import CallbackManager from langchain.chat_models import ChatOpenAI from pydantic import BaseModel import requests import typing from typing import TypeVar, Generic import tqdm from langchain.chains import ConversationalRetrievalChain import os from langchain.embeddings.openai import OpenAIEmbeddings from langchain.vectorstores import DeepLake import random import time import os from langchain.document_loaders import TextLoader from langchain.text_splitter import CharacterTextSplitter import math import subprocess from langchain.callbacks.base import BaseCallbackHandler from langchain.schema import LLMResult from typing import Any, Union job_done = object() class StreamingGradioCallbackHandler(BaseCallbackHandler): def __init__(self, q: SimpleQueue): self.q = q def on_llm_start( self, serialized: typing.Dict[str, Any], prompts: typing.List[str], **kwargs: Any ) -> None: """Run when LLM starts running. Clean the queue.""" while not self.q.empty(): try: self.q.get(block=False) except Empty: continue def on_llm_new_token(self, token: str, **kwargs: Any) -> None: """Run on new LLM token. Only available when streaming is enabled.""" self.q.put(token) def on_llm_end(self, response: LLMResult, **kwargs: Any) -> None: """Run when LLM ends running.""" self.q.put(job_done) def on_llm_error( self, error: Union[Exception, KeyboardInterrupt], **kwargs: Any ) -> None: """Run when LLM errors.""" self.q.put(job_done) class Response(BaseModel): result: typing.Any error: str stdout: str repo: str class HumanPrompt(BaseModel): prompt: str class GithubResponse(BaseModel): result: typing.Any error: str stdout: str repo: str repo_name = gr.State() git_tickets = gr.State() git_titles = gr.State() git_ticket_choices = gr.State() vector_db_url = gr.State() git_tickets.value = [] git_titles.value = [] git_ticket_choices.value = [] embeddings = OpenAIEmbeddings(disallowed_special=()) def git_clone(repo_url): subprocess.run(["git", "clone", repo_url]) dirpath = repo_url.split('/')[-1] if dirpath.lower().endswith('.git'): dirpath = dirpath[:-4] return dirpath def index_repo(textbox: str, dropdown: str) -> Response: mapping = { "Langchain" : "https://github.com/langchain-ai/langchain.git", "Weaviate": "https://github.com/weaviate/weaviate.git", "Llama2": "https://github.com/facebookresearch/llama.git", "OpenAssistant": "https://github.com/LAION-AI/Open-Assistant.git", "MemeAI": "https://github.com/aiswaryasankar/memeAI.git", "GenerativeAgents": "https://github.com/joonspk-research/generative_agents.git" } if textbox != "": repo = textbox else: repo = mapping[dropdown[0]] repo_name.value = repo pathName = git_clone(repo) root_dir = './' + pathName activeloop_username = "aiswaryas" dataset_path = f"hub://{activeloop_username}/" + pathName invalid_dataset_path = False try: try: db = DeepLake(dataset_path=dataset_path, embedding_function=embeddings, token=os.environ['ACTIVELOOP_TOKEN'], read_only=True, num_workers=12, runtime = {"tensor_db": True} ) except Exception as e: print("Failed to read: " + str(e)) if "scheduled for deletion" in str(e): dataset_path = f"hub://{activeloop_username}/" + pathName + str(random.randint(1,100)) invalid_dataset_path = True print(invalid_dataset_path) print(db) print(len(db.vectorstore.dataset)) if invalid_dataset_path or db is None or len(db.vectorstore.dataset) == 0: print("Dataset doesn't exist, fetching data") try: docs = [] for dirpath, dirnames, filenames in os.walk(root_dir): for file in filenames: print(file) try: loader = TextLoader(os.path.join(dirpath, file), encoding='utf-8') docs.extend(loader.load_and_split()) except Exception as e: print("Exception: " + str(e) + "| File: " + os.path.join(dirpath, file)) pass activeloop_username = "aiswaryas" text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0) texts = text_splitter.split_documents(docs) db = DeepLake(dataset_path=dataset_path, embedding_function=embeddings, token=os.environ['ACTIVELOOP_TOKEN'], read_only=False, num_workers=12, runtime = {"tensor_db": True} ) # Do this in chunks to avoid hitting the ratelimit immediately for i in range(0, len(texts), 500): print("Adding documents " + str(i)) db.add_documents(texts[i:i+500]) time.sleep(.5) except Exception as e: return Response( result= "Failed to index github repo", repo="", error=str(e), stdout="", ) except Exception as e: return Response( result= "Failed to index github repo", repo="", error=str(e), stdout="", ) vector_db_url.value = dataset_path return { success_response: "SUCCESS", launch_product: gr.update(visible=True) } def answer_questions(question: str, github: str, **kwargs) -> Response: repoName = repo_name.value github = repoName[:-4] print("REPO NAME: " + github) try: embeddings = OpenAIEmbeddings(disallowed_special=()) pathName = github.split('/')[-1] dataset_path = vector_db_url.value print("before reading repo") db = DeepLake(dataset_path=dataset_path, read_only=True, embedding_function=embeddings) print("finished indexing repo") retriever = db.as_retriever() retriever.search_kwargs['distance_metric'] = 'cos' retriever.search_kwargs['fetch_k'] = 100 retriever.search_kwargs['maximal_marginal_relevance'] = True retriever.search_kwargs['k'] = 20 q = SimpleQueue() model = ChatOpenAI( model_name='gpt-3.5-turbo-16k', temperature=0.0, verbose=True, streaming=True, # Pass `streaming=True` to make sure the client receives the data. callback_manager=CallbackManager( [StreamingGradioCallbackHandler(q)] ), ) qa = ConversationalRetrievalChain.from_llm(model,retriever=retriever, max_tokens_limit=16000) chat_history = [] except Exception as e: print("Exception: " + str(e)) return Response( result="", repo="", error=str(e), stdout="", ) return Response( result=qa({"question": question, "chat_history": chat_history}), repo="", error="", stdout="", ) def fetchGithubIssues(**kwargs) -> Response: """ This endpoint should get a list of all the github issues that are open for this repository """ repo = "/".join(repo_name.value[:-4].split("/")[-2:]) print("REPO NAME IN FETCH GITHUB ISSUES: " + str(repo)) batch = [] all_issues = [] per_page = 100 # Number of issues to return per page num_pages = math.ceil(20 / per_page) base_url = "https://api.github.com/repos" GITHUB_TOKEN = "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" # Copy your GitHub token here headers = {"Authorization": f"token {GITHUB_TOKEN}"} issues_data = [] for page in range(num_pages): # Query with state=all to get both open and closed issues query = f"issues?page={page}&per_page={per_page}&state=all" issues = requests.get(f"{base_url}/{repo}/{query}", headers=headers) print(f"{base_url}/{repo}/{query}") batch.extend(issues.json()) for issue in issues.json(): issues_data.append({ "issue_url": issue["url"], "title": issue["title"], "body": issue["body"], "comments_url": issue["comments_url"], }) # This should set the state variables for tickets git_tickets.value = issues_data git_ticket_choices.value = {ticket["title"]: ticket for ticket in issues_data} git_titles.value = [ticket["title"] for ticket in issues_data] return issues_data def generateFolderNamesForRepo(repo): """ This endpoint will first take the repo structure and return the folder and subfolder names. From those names, it will then prompt the model to generate an architecture diagram of that folder. There will be three "modules" no input just output that take the autogenerated prompts based on the input data and generate the responses that are displayed in the UI. """ pathName = git_clone(repo) root_dir = './' + pathName files, dirs, docs = [], [], [] for dirpath, dirnames, filenames in os.walk(root_dir): for file in filenames: try: loader = TextLoader(os.path.join(dirpath, file), encoding='utf-8') docs.extend(loader.load_and_split()) files.append(file) dirs.append(dirnames) except Exception as e: print("Exception: " + str(e) + "| File: " + os.path.join(dirpath, file)) pass return dirs def generateDocumentationPerFolder(dir, github): if dir == "overview": prompt= """ Summarize the structure of the {} repository. Make a list of all endpoints and their behavior. Explain how this module is used in the scope of the larger project. Format the response as code documentation with an Overview, Architecture and Implementation Details. Within implementation details, list out each function and provide an overview of that function. """.format(github) else: prompt= """ Summarize how {} is implemented in the {} repository. Make a list of all functions and their behavior. Explain how this module is used in the scope of the larger project. Format the response as code documentation with an Overview, Architecture and Implementation Details. Within implementation details, list out each function and provide an overview of that function. """.format(dir, github) try: embeddings = OpenAIEmbeddings(disallowed_special=()) pathName = github.split('/')[-1] dataset_path = vector_db_url.value db = DeepLake(dataset_path=dataset_path, read_only=True, embedding_function=embeddings) retriever = db.as_retriever() retriever.search_kwargs['distance_metric'] = 'cos' retriever.search_kwargs['fetch_k'] = 100 retriever.search_kwargs['maximal_marginal_relevance'] = True retriever.search_kwargs['k'] = 20 # streaming_handler = kwargs.get('streaming_handler') model = ChatOpenAI( model_name='gpt-3.5-turbo-16k', temperature=0.0, verbose=True, streaming=True, # Pass `streaming=True` to make sure the client receives the data. ) qa = ConversationalRetrievalChain.from_llm(model,retriever=retriever, max_tokens_limit=16000) chat_history = [] return qa({"question": prompt, "chat_history": chat_history})["answer"] except Exception as e: print (str(e)) return "Failed to generate documentation" def solveGithubIssue(ticket, history) -> Response: """ This endpoint takes in a github issue and then queries the db for the question against the codebase. """ repoName = repo_name.value github = repoName[:-4] repoFolder = github.split("/")[-1] body = git_ticket_choices.value[ticket]["body"] title = git_ticket_choices.value[ticket]["title"] question = """ Given the code in the {} repo, propose a solution for this ticket {} that includes a high level implementation, narrowing down the root cause of the issue and psuedocode if applicable on how to resolve the issue. If multiple changes are required to address the problem, list out each of the steps and a brief explanation for each one. """.format(repoFolder, body) q_display = """ Can you explain how to approach solving this ticket: {}. Here is a summary of the issue: {} """.format(title, body) try: embeddings = OpenAIEmbeddings(disallowed_special=()) pathName = github.split('/')[-1] dataset_path = vector_db_url.value db = DeepLake(dataset_path=dataset_path, read_only=True, embedding=embeddings) retriever = db.as_retriever() retriever.search_kwargs['distance_metric'] = 'cos' retriever.search_kwargs['fetch_k'] = 100 retriever.search_kwargs['maximal_marginal_relevance'] = True retriever.search_kwargs['k'] = 20 q = SimpleQueue() model = ChatOpenAI( model_name='gpt-3.5-turbo-16k', temperature=0.0, verbose=True, streaming=True, # Pass `streaming=True` to make sure the client receives the data. callback_manager=CallbackManager( [StreamingGradioCallbackHandler(q)] ), ) qa = ConversationalRetrievalChain.from_llm(model,retriever=retriever, max_tokens_limit=16000) except Exception as e: return [[str(e), None]] history = [[q_display, ""]] history[-1][1] = "" # Flatten the list of lists flat_list = [item for sublist in history for item in sublist] flat_list = [item for item in flat_list if item is not None] print(flat_list) for char in qa({"question": question, "chat_history": []})["answer"]: history[-1][1] += char yield history def user(message, history): return "", history + [[message, None]] def bot(history, **kwargs): user_message = history[-1][0] # global repoName repoName = repo_name.value print("STATE REPO NAME: " + repoName) github = repoName[:-4] try: embeddings = OpenAIEmbeddings(disallowed_special=()) pathName = github.split('/')[-1] dataset_path = vector_db_url.value db = DeepLake(dataset_path=dataset_path, read_only=True, embedding_function=embeddings) retriever = db.as_retriever() retriever.search_kwargs['distance_metric'] = 'cos' retriever.search_kwargs['fetch_k'] = 100 retriever.search_kwargs['maximal_marginal_relevance'] = True retriever.search_kwargs['k'] = 20 q = SimpleQueue() model = ChatOpenAI( model_name='gpt-3.5-turbo-16k', temperature=0.0, verbose=True, streaming=True, # Pass `streaming=True` to make sure the client receives the data. callback_manager=CallbackManager( [StreamingGradioCallbackHandler(q)] ), ) qa = ConversationalRetrievalChain.from_llm(model,retriever=retriever, max_tokens_limit=16000, return_source_documents=True, get_chat_history=lambda h : h) chat_history = [] except Exception as e: print("Exception: " + str(e)) return str(e) history[-1][1] = "" for char in qa({"question": user_message, "chat_history": []})["answer"]: history[-1][1] += char yield history with gr.Blocks() as demo: # repoName = gr.State(value="https://github.com/sourcegraph/cody.git") gr.Markdown("""

Entelligence AI

Enabling your product team to ship product 10x faster.

""") repoTextBox = gr.Textbox(label="Github Repository") gr.Markdown("""Choose from any of the following repositories""") ingestedRepos = gr.CheckboxGroup(choices=['Langchain', 'Weaviate', 'OpenAssistant', 'GenerativeAgents','Llama2', "MemeAI"], label="Github Repository", value="Langchain") success_response = gr.Textbox(label="") ingest_btn = gr.Button("Index repo") with gr.Column(visible=False) as launch_product: # Toggle visibility of the chat, bugs, docs, model windows with gr.Tab("Code Chat"): chatbot = gr.Chatbot() msg = gr.Textbox() clear = gr.Button("Clear") msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then( bot, chatbot, chatbot ) clear.click(lambda: None, None, chatbot, queue=False) index = 0 with gr.Tab("Bug Triage"): # Display the titles in the dropdown def create_ticket_dropdown(): print(git_titles.value) return ticketDropdown.update( choices=git_titles.value ) ticketDropdown = gr.Dropdown(choices=[], title="Github Issues", interactive=True) ticketDropdown.focus(create_ticket_dropdown, outputs=ticketDropdown) chatbot = gr.Chatbot() msg = gr.Textbox() clear = gr.Button("Clear") ticketDropdown.change(solveGithubIssue, inputs=[ticketDropdown, chatbot], outputs=[chatbot]) msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then( bot, chatbot, chatbot ) clear.click(lambda: None, None, chatbot, queue=False) # with gr.Tab("AI Code Documentation"): # repoName = repo_name.value # # First parse through the folder structure and store that as a list of clickable buttons # gr.Markdown(""" # ## AI Generated Code Documentation # Code documentation comes in 3 flavors - internal engineering, external API documentation and product documentation. Each offers different layers of abstraction over the code base. # """) # # docs = generateDocumentationPerFolder("overview", repo_name) # # For now let's just display all of the docs in one big file # allDocs = "" # dirNames = generateFolderNamesForRepo(repoName[:-4]) # for dir in dirNames: # if dir[0] != ".": # allDocs += generateDocumentationPerFolder(dir, repoName[:-4]) + '\n\n' # gr.Markdown(allDocs) # def button_click_callback(markdown): # docs = generateDocumentationPerFolder("overview", repoName[:-4]) # markdown.update(docs) # markdown = gr.Markdown() # # Generate the left column buttons and their names and wrap each one in a function # with gr.Row(): # with gr.Column(scale=.5, min_width=300): # dirNames = generateFolderNamesForRepo(repoName[:-4]) # buttons = [gr.Button(folder_name) for folder_name in dirNames] # for btn, folder_name in zip(buttons, dirNames): # btn.click(button_click_callback, [markdown], [markdown] ) # # Generate the overall documentation for the main bubble at the same time # with gr.Column(scale=2, min_width=300): # docs = generateDocumentationPerFolder("overview", repoName[:-4]) # markdown.update(docs) # # markdown.render() with gr.Tab("Custom Model Finetuning"): # First provide a summary of offering gr.Markdown(""" # Enterprise Custom Model Finetuning Finetuning code generation models directly on your enterprise code base has shown up to 10% increase in model suggestion acceptance rate. """) # Choose base model - radio with model size gr.Radio(choices=["Santacoder (1.1B parameter model)", "Incoder (6B parameter model)", "Codegen (16B parameter model)", "Starcoder (15.5B parameter model)"] , value="Starcoder (15.5B parameter model)") # Choose existing code base or input a new code base for finetuning - with gr.Row(): gr.Markdown(""" If you'd like to use the current code base, click this toggle otherwise input the entire code base below. """) existing_repo = gr.Checkbox(value=True, label="Use existing repository") gr.Textbox(label="Input repository", visible=False) # Allow option to remove generated files etc etc gr.Markdown(""" Finetuned model performance is highly dependent on training data quality. We have currently found that excluding the following file types improves performance. If you'd like to include them, please toggle them. """) file_types = gr.CheckboxGroup(choices=['.bin', '.gen', '.git', '.gz','.jpg', '.lz', '.midi', '.mpq','.png', '.tz'], label="Removed file types") # Based on data above, we should show a field for estimated fine tuning cost # Then we should show the chart for loss def wandb_report(url): iframe = f'