import os from threading import Thread from typing import Iterator import gradio as gr import spaces import torch from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer MAX_MAX_NEW_TOKENS = 1024 DEFAULT_MAX_NEW_TOKENS = 512 MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096")) DESCRIPTION = """\ # Tamil Llama 2 This Space demonstrates the Tamil Llama-2 7b [model](https://huggingface.co/abhinand/tamil-llama-7b-instruct-v0.1) as a daily life AI assistant. """ LICENSE = """
--- As a derivate work of [Llama-2-7b-chat](https://huggingface.co/meta-llama/Llama-2-7b-chat) by Meta, this demo is governed by the original [license](https://huggingface.co/spaces/huggingface-projects/llama-2-7b-chat/blob/main/LICENSE.txt) and [acceptable use policy](https://huggingface.co/spaces/huggingface-projects/llama-2-7b-chat/blob/main/USE_POLICY.md). """ SYSTEM_PROMPT = "நீங்கள் உதவிகரமான மற்றும் மரியாதைக்குரிய மற்றும் நேர்மையான AI உதவியாளர்." PROMPT_TEMPLATE = """## Instructions:\n{% if messages[0]['role'] == 'system' %}{{ messages[0]['content'] + '\n' }}{% endif %}{% for message in messages %}{% if message['role'] == 'user' %}{{ '\n## Input:\n' + message['content'] + '\n'}}{% elif message['role'] == 'assistant' %}{{ '\n## Response:\n' + message['content'] + '\n'}}{% endif %}{% endfor %}\n\n## Response:\n""" if not torch.cuda.is_available(): DESCRIPTION += "\nRunning on CPU 🥶 This demo does not work on CPU.
" if torch.cuda.is_available(): model_id = "abhinand/tamil-llama-7b-instruct-v0.1" model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16, device_map="auto") tokenizer = AutoTokenizer.from_pretrained(model_id) tokenizer.chat_template = PROMPT_TEMPLATE tokenizer.use_default_system_prompt = False @spaces.GPU def generate( message: str, chat_history: list[tuple[str, str]], system_prompt: str = SYSTEM_PROMPT, max_new_tokens: int = 1024, temperature: float = 0.6, top_p: float = 0.9, top_k: int = 50, repetition_penalty: float = 1.2, ) -> Iterator[str]: conversation = [] if system_prompt: conversation.append({"role": "system", "content": system_prompt}) for user, assistant in chat_history: conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}]) conversation.append({"role": "user", "content": message}) input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt") if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH: input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:] gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.") input_ids = input_ids.to(model.device) streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True) generate_kwargs = dict( {"input_ids": input_ids}, streamer=streamer, max_new_tokens=max_new_tokens, do_sample=True, top_p=top_p, top_k=top_k, temperature=temperature, num_beams=1, repetition_penalty=repetition_penalty, ) t = Thread(target=model.generate, kwargs=generate_kwargs) t.start() outputs = [] for text in streamer: outputs.append(text) yield "".join(outputs) chat_interface = gr.ChatInterface( fn=generate, additional_inputs=[ gr.Textbox(label="System prompt", lines=6), gr.Slider( label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS, ), gr.Slider( label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6, ), gr.Slider( label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9, ), gr.Slider( label="Top-k", minimum=1, maximum=1000, step=1, value=50, ), gr.Slider( label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2, ), ], stop_btn=None, examples=[ ["வணக்கம், நீங்கள் யார்?"], ["நான் பெரிய பணக்காரன் இல்லை, லேட்டஸ்ட் iPhone-இல் நிறைய பணம் செலவழிக்க வேண்டுமா?"], ["பட்டியலை வரிசைப்படுத்த பைதான் செயல்பாட்டை எழுதவும்."], ["சிவப்பும் மஞ்சளும் கலந்தால் என்ன நிறமாக இருக்கும்?"], ["விரைவாக தூங்குவது எப்படி?"], ], ) with gr.Blocks(css="style.css") as demo: gr.Markdown(DESCRIPTION) gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button") chat_interface.render() gr.Markdown(LICENSE) if __name__ == "__main__": demo.queue(max_size=20).launch()