import spaces import json import subprocess from llama_cpp import Llama from llama_cpp_agent import LlamaCppAgent, MessagesFormatterType from llama_cpp_agent.providers import LlamaCppPythonProvider from llama_cpp_agent.chat_history import BasicChatHistory from llama_cpp_agent.chat_history.messages import Roles import gradio as gr from huggingface_hub import hf_hub_download # モデルのダウンロード hf_hub_download( repo_id="bartowski/gemma-2-9b-it-GGUF", filename="gemma-2-9b-it-Q5_K_M.gguf", local_dir="./models" ) hf_hub_download( repo_id="bartowski/Gemma-2-9B-It-SPPO-Iter3-GGUF", filename="Gemma-2-9B-It-SPPO-Iter3-Q5_K_M.gguf", local_dir="./models" ) hf_hub_download( repo_id="mradermacher/EZO-Common-9B-gemma-2-it-GGUF", filename="EZO-Common-9B-gemma-2-it.Q5_K_M.gguf", local_dir="./models" ) hf_hub_download( repo_id="mradermacher/EZO-Humanities-9B-gemma-2-it-GGUF", filename="EZO-Humanities-9B-gemma-2-it.Q5_K_M.gguf", local_dir="./models" ) # 推論関数 @spaces.GPU(duration=120) def respond( message, history: list[tuple[str, str]], model, system_message, max_tokens, temperature, top_p, top_k, repeat_penalty, ): chat_template = MessagesFormatterType.GEMMA_2 llm = Llama( model_path=f"models/{model}", flash_attn=True, n_gpu_layers=81, n_batch=1024, n_ctx=8192, ) provider = LlamaCppPythonProvider(llm) agent = LlamaCppAgent( provider, system_prompt=f"{system_message}", predefined_messages_formatter_type=chat_template, debug_output=True ) settings = provider.get_provider_default_settings() settings.temperature = temperature settings.top_k = top_k settings.top_p = top_p settings.max_tokens = max_tokens settings.repeat_penalty = repeat_penalty settings.stream = True messages = BasicChatHistory() for msn in history: user = { 'role': Roles.user, 'content': msn[0] } assistant = { 'role': Roles.assistant, 'content': msn[1] } messages.add_message(user) messages.add_message(assistant) stream = agent.get_chat_response( message, llm_sampling_settings=settings, chat_history=messages, returns_streaming_generator=True, print_output=False ) outputs = "" for output in stream: outputs += output yield outputs # Gradioのインターフェースを作成 def create_interface(model_name, description): return gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value=model_name, label="Model", interactive=False), gr.Textbox(value="You are a helpful assistant.", label="System message"), gr.Slider(minimum=1, maximum=4096, value=2048, step=1, label="Max tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p", ), gr.Slider( minimum=0, maximum=100, value=40, step=1, label="Top-k", ), gr.Slider( minimum=0.0, maximum=2.0, value=1.1, step=0.1, label="Repetition penalty", ), ], retry_btn="Retry", undo_btn="Undo", clear_btn="Clear", submit_btn="Send", title=f"{model_name}", description=description, chatbot=gr.Chatbot( scale=1, likeable=False, show_copy_button=True ) ) # 各モデルのインターフェース description_a = """
Gemma-2 9B it Q5
""" description_b = """Gemma-2 9B SPPO it Q5
""" description_c = """EZO Common 9B it Q5
""" description_d = """EZO Humanities 9B it Q5
""" interface_a = create_interface('gemma-2-9b-it-Q5_K_M.gguf', description_a) interface_b = create_interface('Gemma-2-9B-It-SPPO-Iter3-Q5_K_M.gguf', description_b) interface_c = create_interface('EZO-Common-9B-gemma-2-it.Q5_K_M.gguf', description_c) interface_d = create_interface('EZO-Humanities-9B-gemma-2-it.Q5_K_M.gguf', description_d) # Gradio Blocksで4つのインターフェースを並べて表示 demo = gr.Blocks() with demo: gr.HTML(""" """) with gr.Row(): with gr.Column(): interface_c.render() with gr.Column(): interface_d.render() with gr.Row(): with gr.Column(): interface_a.render() with gr.Column(): interface_b.render() if __name__ == "__main__": demo.launch()