import gradio as gr import torch from transformers import AutoModelForCausalLM, AutoTokenizer, StoppingCriteria, StoppingCriteriaList, TextIteratorStreamer from threading import Thread import spaces # 言語リスト languages = [ "English", "Chinese (Simplified)", "Chinese (Traditional)", "Spanish", "Arabic", "Hindi", "Bengali", "Portuguese", "Russian", "Japanese", "German", "French", "Urdu", "Indonesian", "Italian", "Turkish", "Korean", "Vietnamese", "Tamil", "Marathi", "Telugu", "Persian", "Polish", "Dutch", "Thai", "Gujarati", "Romanian", "Ukrainian", "Malay", "Kannada", "Oriya (Odia)", "Burmese (Myanmar)", "Azerbaijani", "Uzbek", "Kurdish (Kurmanji)", "Swedish", "Filipino (Tagalog)", "Serbian", "Czech", "Hungarian", "Greek", "Belarusian", "Bulgarian", "Hebrew", "Finnish", "Slovak", "Norwegian", "Danish", "Sinhala", "Croatian", "Lithuanian", "Slovenian", "Latvian", "Estonian", "Armenian", "Malayalam", "Georgian", "Mongolian", "Afrikaans", "Nepali", "Pashto", "Punjabi", "Kurdish", "Kyrgyz", "Somali", "Albanian", "Icelandic", "Basque", "Luxembourgish", "Macedonian", "Maltese", "Hawaiian", "Yoruba", "Maori", "Zulu", "Welsh", "Swahili", "Haitian Creole", "Lao", "Amharic", "Khmer", "Javanese", "Kazakh", "Malagasy", "Sindhi", "Sundanese", "Tajik", "Xhosa", "Yiddish", "Bosnian", "Cebuano", "Chichewa", "Corsican", "Esperanto", "Frisian", "Galician", "Hausa", "Hmong", "Igbo", "Irish", "Kinyarwanda", "Latin", "Samoan", "Scots Gaelic", "Sesotho", "Shona", "Sotho", "Swedish", "Uyghur" ] tokenizer = AutoTokenizer.from_pretrained("aixsatoshi/Honyaku-7b-v2") model = AutoModelForCausalLM.from_pretrained("aixsatoshi/Honyaku-7b-v2", torch_dtype=torch.float16) model = model.to('cuda:0') class StopOnTokens(StoppingCriteria): def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool: stop_ids = [2] for stop_id in stop_ids: if input_ids[0][-1] == stop_id: return True return False @spaces.GPU def predict(message, history, tokens, temperature, language): tag = "<" + language.lower() + ">" history_transformer_format = history + [[message, ""]] stop = StopOnTokens() messages = "".join(["".join(["\n:"+item[0]+"\n", tag+item[1]]) for item in history_transformer_format]) model_inputs = tokenizer([messages], return_tensors="pt").to("cuda") streamer = TextIteratorStreamer(tokenizer, timeout=10., skip_prompt=True, skip_special_tokens=True) generate_kwargs = dict( model_inputs, streamer=streamer, max_new_tokens=int(tokens), temperature=float(temperature), do_sample=True, top_p=0.95, top_k=20, repetition_penalty=1.15, num_beams=1, stopping_criteria=StoppingCriteriaList([stop]) ) t = Thread(target=model.generate, kwargs=generate_kwargs) t.start() partial_message = "" for new_token in streamer: if new_token != '<': partial_message += new_token yield partial_message # Gradioインタフェースの設定 demo = gr.ChatInterface( fn=predict, title="Honyaku-7b webui", description="Translate using Honyaku-7b model", chatbot=gr.Chatbot(height=512), textbox=gr.Textbox(lines=10,placeholder="Please enter the English text you want to translate. We will translate entire paragraphs of around 500 tokens. By looking at the whole text, we adapt the translation style according to the context. We do not support short sentences.", container=False, scale=7), theme="soft", retry_btn=None, undo_btn="Delete Previous", clear_btn="Clear", additional_inputs=[ gr.Slider(100, 4096, value=1000, label="Tokens"), gr.Slider(0.0, 1.0, value=0.3, label="Temperature"), gr.Dropdown(choices=languages, value="Japanese", label="Language") ], examples=[ ["In an era marked by rapid globalization, the intricate interplay between international law, economic policies, and political dynamics has become increasingly complex. Legal frameworks, once confined within national borders, now stretch across continents, necessitating a nuanced understanding of transnational legislation and treaties. As multinational corporations navigate the labyrinthine maze of global markets, economic theories that underpin currency fluctuations, trade imbalances, and fiscal policies are more pertinent than ever. Central to these economic considerations is the concept of market equilibrium, a delicate balance affected by myriad factors including consumer behavior, governmental regulations, and global crises.Politically, the landscape is equally labyrinthine. Ideological shifts and the resurgence of nationalism have reshaped diplomatic relations, with international agreements and alliances being tested under the strain of geopolitical tensions. The role of supranational entities like the United Nations and the European Union in mediating these conflicts is of paramount importance, as is the need for diplomatic finesse in an increasingly multipolar world. Furthermore, the intersection of politics and economics is evident in the debate over economic sanctions and their efficacy in swaying political decisions.In this context, understanding the subtleties of rhetoric used in political discourse, and how it interweaves with legal jargon and economic terminology, is crucial. "], ], ) demo.queue().launch()