File size: 5,900 Bytes
4b1a870
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5077254
 
 
 
 
 
 
 
4b1a870
6b59e6e
 
 
4b1a870
 
 
 
 
 
 
 
 
 
 
 
5077254
4b1a870
6b59e6e
 
 
 
 
 
 
 
 
 
 
 
 
4b1a870
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1aebd88
 
 
4b1a870
1aebd88
4b1a870
 
 
 
 
 
 
 
 
 
 
1aebd88
2ac2a22
 
 
 
 
 
 
 
 
4b1a870
 
 
 
5077254
 
4b1a870
5077254
4b1a870
 
fef6f02
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4b1a870
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fef6f02
2ac2a22
4b1a870
 
 
 
 
 
 
 
fef6f02
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
import spaces
import json
import subprocess
from llama_cpp import Llama
from llama_cpp_agent import LlamaCppAgent, MessagesFormatterType
from llama_cpp_agent.providers import LlamaCppPythonProvider
from llama_cpp_agent.chat_history import BasicChatHistory
from llama_cpp_agent.chat_history.messages import Roles
import gradio as gr
from huggingface_hub import hf_hub_download

hf_hub_download(
    repo_id="bartowski/gemma-2-9b-it-GGUF",
    filename="gemma-2-9b-it-Q5_K_M.gguf",
    local_dir="./models"
)



hf_hub_download(
    repo_id="bartowski/gemma-2-27b-it-GGUF",
    filename="gemma-2-27b-it-Q5_K_M.gguf",
    local_dir="./models"
)


llm = None
llm_model = None

@spaces.GPU(duration=120)
def respond(
    message,
    history: list[tuple[str, str]],
    model,
    system_message,
    max_tokens,
    temperature,
    top_p,
    top_k,
    repeat_penalty,
):
    chat_template = MessagesFormatterType.GEMMA_2

    global llm
    global llm_model
    
    if llm is None or llm_model != model:
        llm = Llama(
            model_path=f"models/{model}",
            flash_attn=True,
            n_gpu_layers=81,
            n_batch=1024,
            n_ctx=8192,
        )
        llm_model = model

    provider = LlamaCppPythonProvider(llm)

    agent = LlamaCppAgent(
        provider,
        system_prompt=f"{system_message}",
        predefined_messages_formatter_type=chat_template,
        debug_output=True
    )
    
    settings = provider.get_provider_default_settings()
    settings.temperature = temperature
    settings.top_k = top_k
    settings.top_p = top_p
    settings.max_tokens = max_tokens
    settings.repeat_penalty = repeat_penalty
    settings.stream = True

    messages = BasicChatHistory()

    for msn in history:
        user = {
            'role': Roles.user,
            'content': msn[0]
        }
        assistant = {
            'role': Roles.assistant,
            'content': msn[1]
        }
        messages.add_message(user)
        messages.add_message(assistant)
    
    # ユーザーのメッセージに指示プロンプトを追加
    message_with_prompt = message + "\n\n日本語に翻訳してください。"

    stream = agent.get_chat_response(
        message_with_prompt,
        llm_sampling_settings=settings,
        chat_history=messages,
        returns_streaming_generator=True,
        print_output=False
    )
    
    outputs = ""
    for output in stream:
        outputs += output
        yield outputs


description = """<p align="center">Defaults to 27B it (you can switch to 9b it from additional inputs)</p>
<p><center>
<a href="https://huggingface.co/google/gemma-2-27b-it" target="_blank">[27B it Model]</a>
<a href="https://huggingface.co/google/gemma-2-9b-it" target="_blank">[9B it Model]</a>
<a href="https://huggingface.co/bartowski/gemma-2-27b-it-GGUF" target="_blank">[27B it Model GGUF]</a>
<a href="https://huggingface.co/bartowski/gemma-2-9b-it-GGUF" target="_blank">[9B it Model GGUF]</a>
</center></p>
"""

demo = gr.ChatInterface(
    respond,
    additional_inputs=[
        gr.Dropdown([
                'gemma-2-9b-it-Q5_K_M.gguf',
                'gemma-2-27b-it-Q5_K_M.gguf'
            ],
            value="gemma-2-27b-it-Q5_K_M.gguf",
            label="Model"
        ),
        gr.Textbox(value="""あなたは優れた翻訳者です。以下の文章を日本語から英語に翻訳してください。翻訳は文法的に正しく、自然な表現を使用し、文脈に適した内容にしてください。また、専門用語や文化的なニュアンスを正確に伝えるよう心がけてください。

期待する品質基準:
1. 文法的に正確であること。
2. 自然な英語表現を使用すること。
3. 文脈に適した訳を提供すること。
4. 専門用語や文化的なニュアンスを正確に伝えること。

以下に翻訳の例を示します。

例:
日本語: 優れた翻訳は、原文の意味を正確に伝えるだけでなく、読み手にとって自然な表現である必要があります。文法的な正確さはもちろんのこと、文化的なニュアンスも重要です。専門用語の正確な訳も求められます。さらに、文脈に適した訳を提供することが、翻訳の品質を高めます。最終的には、読み手にとってわかりやすい訳を目指してください。
英語: A good translation should not only convey the meaning of the original text accurately but also be expressed in a natural way for the reader. In addition to grammatical accuracy, cultural nuances are important. Accurate translation of technical terms is also required. Furthermore, providing a translation that fits the context enhances the quality of the translation. Ultimately, aim for a translation that is easy for the reader to understand.

以下の日本語の文章を英語に翻訳してください:""", label="System message"),
        gr.Slider(minimum=1, maximum=4096, value=2048, step=1, label="Max tokens"),
        gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
        gr.Slider(
            minimum=0.1,
            maximum=1.0,
            value=0.95,
            step=0.05,
            label="Top-p",
        ),
        gr.Slider(
            minimum=0,
            maximum=100,
            value=40,
            step=1,
            label="Top-k",
        ),
        gr.Slider(
            minimum=0.0,
            maximum=2.0,
            value=1.1,
            step=0.1,
            label="Repetition penalty",
        ),
    ],
    retry_btn="Retry",
    undo_btn="Undo",
    clear_btn="Clear",
    submit_btn="Send",
    title="Honyaku-Gemma2-v1", 
    description=description,
    chatbot=gr.Chatbot(
        scale=1, 
        likeable=False,
        show_copy_button=True
    )
)

if __name__ == "__main__":
    demo.launch()