File size: 5,907 Bytes
4b1a870
 
 
 
 
 
 
 
 
 
 
1ec3975
 
 
 
 
4b1a870
5077254
 
 
 
93eb702
5077254
 
 
4b1a870
6b59e6e
 
 
4b1a870
 
 
 
 
 
 
 
 
 
 
 
5077254
4b1a870
6b59e6e
 
 
 
 
 
 
 
 
 
 
 
 
4b1a870
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1aebd88
91d2a19
1aebd88
4b1a870
1aebd88
4b1a870
 
 
 
 
 
 
 
 
 
 
1aebd88
64d5f5a
2ac2a22
 
 
 
 
 
 
 
4b1a870
 
 
 
6629ad4
1ec3975
ad3a4c7
1ec3975
4b1a870
 
6ce94bb
fef6f02
 
 
9a24e3d
fef6f02
 
 
 
 
 
 
6ce94bb
fef6f02
6ce94bb
4b1a870
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fef6f02
2ac2a22
4b1a870
 
 
 
 
 
 
 
fef6f02
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
import spaces
import json
import subprocess
from llama_cpp import Llama
from llama_cpp_agent import LlamaCppAgent, MessagesFormatterType
from llama_cpp_agent.providers import LlamaCppPythonProvider
from llama_cpp_agent.chat_history import BasicChatHistory
from llama_cpp_agent.chat_history.messages import Roles
import gradio as gr
from huggingface_hub import hf_hub_download

#hf_hub_download(
#    repo_id="bartowski/gemma-2-9b-it-GGUF",
#    filename="gemma-2-9b-it-Q6_K_L.gguf",
#    local_dir="./models"
#)



hf_hub_download(
    repo_id="bartowski/gemma-2-27b-it-GGUF",
    filename="gemma-2-27b-it-Q8_0.gguf",
    local_dir="./models"
)


llm = None
llm_model = None

@spaces.GPU(duration=120)
def respond(
    message,
    history: list[tuple[str, str]],
    model,
    system_message,
    max_tokens,
    temperature,
    top_p,
    top_k,
    repeat_penalty,
):
    chat_template = MessagesFormatterType.GEMMA_2

    global llm
    global llm_model
    
    if llm is None or llm_model != model:
        llm = Llama(
            model_path=f"models/{model}",
            flash_attn=True,
            n_gpu_layers=81,
            n_batch=1024,
            n_ctx=8192,
        )
        llm_model = model

    provider = LlamaCppPythonProvider(llm)

    agent = LlamaCppAgent(
        provider,
        system_prompt=f"{system_message}",
        predefined_messages_formatter_type=chat_template,
        debug_output=True
    )
    
    settings = provider.get_provider_default_settings()
    settings.temperature = temperature
    settings.top_k = top_k
    settings.top_p = top_p
    settings.max_tokens = max_tokens
    settings.repeat_penalty = repeat_penalty
    settings.stream = True

    messages = BasicChatHistory()

    for msn in history:
        user = {
            'role': Roles.user,
            'content': msn[0]
        }
        assistant = {
            'role': Roles.assistant,
            'content': msn[1]
        }
        messages.add_message(user)
        messages.add_message(assistant)
    
    # ユーザーのメッセージに指示プロンプトを追加
    message_with_prompt = message + "\n\n日本語に翻訳してください。翻訳文以外の返答はしないでください。"

    stream = agent.get_chat_response(
        message_with_prompt,
        llm_sampling_settings=settings,
        chat_history=messages,
        returns_streaming_generator=True,
        print_output=False
    )
    
    outputs = ""
    for output in stream:
        outputs += output
        yield outputs


description = """<p align="center">English to japanese</p>
<p><center>
<a href="https://huggingface.co/google/gemma-2-27b-it" target="_blank">[27B it Model]</a>
<a href="https://huggingface.co/google/gemma-2-9b-it" target="_blank">[9B it Model]</a>
<a href="https://huggingface.co/bartowski/gemma-2-27b-it-GGUF" target="_blank">[27B it Model GGUF]</a>
<a href="https://huggingface.co/bartowski/gemma-2-9b-it-GGUF" target="_blank">[9B it Model GGUF]</a>
</center></p>
"""

demo = gr.ChatInterface(
    respond,
    additional_inputs=[
        gr.Dropdown([
                'gemma-2-27b-it-Q8_0.gguf',
                'gemma-2-27b-it-Q8_0.gguf'
            ],
            value="gemma-2-27b-it-Q8_0.gguf",
            label="Model"
        ),
        gr.Textbox(value="""あなたは優れた翻訳者です。以下の文章を英語から日本語に翻訳してください。翻訳は文法的に正しく、自然な表現を使用し、文脈に適した内容にしてください。また、専門用語や文化的なニュアンスを正確に伝えるよう心がけてください。

期待する品質基準:
1. 文法的に正確であること。
2. 自然な日本語表現を使用すること。
3. 文脈に適した訳を提供すること。
4. 専門用語や文化的なニュアンスを正確に伝えること。

以下に翻訳の例を示します。

例:
英語: A good translation should not only convey the meaning of the original text accurately but also be expressed in a natural way for the reader. In addition to grammatical accuracy, cultural nuances are important. Accurate translation of technical terms is also required. Furthermore, providing a translation that fits the context enhances the quality of the translation. Ultimately, aim for a translation that is easy for the reader to understand.
日本語: 優れた翻訳は、原文の意味を正確に伝えるだけでなく、読み手にとって自然な表現である必要があります。文法的な正確さはもちろんのこと、文化的なニュアンスも重要です。専門用語の正確な訳も求められます。さらに、文脈に適した訳を提供することが、翻訳の品質を高めます。最終的には、読み手にとってわかりやすい訳を目指してください。

以下の英語の文章を日本語に翻訳してください:""", label="System message"),
        gr.Slider(minimum=1, maximum=4096, value=2048, step=1, label="Max tokens"),
        gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
        gr.Slider(
            minimum=0.1,
            maximum=1.0,
            value=0.95,
            step=0.05,
            label="Top-p",
        ),
        gr.Slider(
            minimum=0,
            maximum=100,
            value=40,
            step=1,
            label="Top-k",
        ),
        gr.Slider(
            minimum=0.0,
            maximum=2.0,
            value=1.1,
            step=0.1,
            label="Repetition penalty",
        ),
    ],
    retry_btn="Retry",
    undo_btn="Undo",
    clear_btn="Clear",
    submit_btn="Send",
    title="Honyaku-Gemma2-v1", 
    description=description,
    chatbot=gr.Chatbot(
        scale=1, 
        likeable=False,
        show_copy_button=True
    )
)

if __name__ == "__main__":
    demo.launch()