Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import spaces | |
from mistral_inference.transformer import Transformer | |
from mistral_inference.generate import generate | |
from mistral_common.tokens.tokenizers.mistral import MistralTokenizer | |
from mistral_common.protocol.instruct.messages import UserMessage, TextChunk, ImageURLChunk | |
from mistral_common.protocol.instruct.request import ChatCompletionRequest | |
from huggingface_hub import snapshot_download | |
from pathlib import Path | |
# モデルのダウンロードと準備 | |
mistral_models_path = Path.home().joinpath('mistral_models', 'Pixtral') | |
mistral_models_path.mkdir(parents=True, exist_ok=True) | |
snapshot_download(repo_id="mistral-community/pixtral-12b-240910", | |
allow_patterns=["params.json", "consolidated.safetensors", "tekken.json"], | |
local_dir=mistral_models_path) | |
# トークナイザーとモデルのロード | |
tokenizer = MistralTokenizer.from_file(f"{mistral_models_path}/tekken.json") | |
model = Transformer.from_folder(mistral_models_path) | |
# 推論処理 | |
def mistral_inference(prompt, image_url): | |
completion_request = ChatCompletionRequest( | |
messages=[UserMessage(content=[ImageURLChunk(image_url=image_url), TextChunk(text=prompt)])] | |
) | |
encoded = tokenizer.encode_chat_completion(completion_request) | |
images = encoded.images | |
tokens = encoded.tokens | |
out_tokens, _ = generate([tokens], model, images=[images], max_tokens=1024, temperature=0.35, eos_id=tokenizer.instruct_tokenizer.tokenizer.eos_id) | |
result = tokenizer.decode(out_tokens[0]) | |
return result | |
# Gradio インターフェース | |
def process_input(text, image_url): | |
result = mistral_inference(text, image_url) | |
return result, image_url | |
with gr.Blocks() as demo: | |
gr.Markdown("## Pixtralモデルによる画像説明生成") | |
with gr.Row(): | |
text_input = gr.Textbox(label="テキストプロンプト", placeholder="例: Describe the image.") | |
image_input = gr.Textbox(label="画像URL", placeholder="例: https://example.com/image.png") | |
result_output = gr.Textbox(label="モデルの出力結果", lines=8, max_lines=20) # 高さを500ピクセルに相当するように調整 | |
image_output = gr.Image(label="入力された画像", type="auto") # 入力画像URLを表示するための場所 | |
submit_button = gr.Button("推論を実行") | |
# ボタンをクリックすると、モデルの結果と画像を表示 | |
submit_button.click(process_input, inputs=[text_input, image_input], outputs=[result_output, image_output]) | |
demo.launch() |