Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import spaces | |
from mistral_inference.transformer import Transformer | |
from mistral_inference.generate import generate | |
from mistral_common.tokens.tokenizers.mistral import MistralTokenizer | |
from mistral_common.protocol.instruct.messages import UserMessage, TextChunk, ImageURLChunk | |
from mistral_common.protocol.instruct.request import ChatCompletionRequest | |
from huggingface_hub import snapshot_download | |
from pathlib import Path | |
# モデルのダウンロードと準備 | |
mistral_models_path = Path.home().joinpath('mistral_models', 'Pixtral') | |
mistral_models_path.mkdir(parents=True, exist_ok=True) | |
snapshot_download(repo_id="mistral-community/pixtral-12b-240910", | |
allow_patterns=["params.json", "consolidated.safetensors", "tekken.json"], | |
local_dir=mistral_models_path) | |
# トークナイザーとモデルのロード | |
tokenizer = MistralTokenizer.from_file(f"{mistral_models_path}/tekken.json") | |
model = Transformer.from_folder(mistral_models_path) | |
# 推論処理 | |
def mistral_inference(prompt, image_url): | |
completion_request = ChatCompletionRequest( | |
messages=[UserMessage(content=[ImageURLChunk(image_url=image_url), TextChunk(text=prompt)])] | |
) | |
encoded = tokenizer.encode_chat_completion(completion_request) | |
images = encoded.images | |
tokens = encoded.tokens | |
out_tokens, _ = generate([tokens], model, images=[images], max_tokens=1024, temperature=0.35, eos_id=tokenizer.instruct_tokenizer.tokenizer.eos_id) | |
result = tokenizer.decode(out_tokens[0]) | |
return result | |
# 言語によるUIラベルの設定 | |
def get_labels(language): | |
labels = { | |
'en': { | |
'title': "Pixtral Model Image Description", | |
'text_prompt': "Text Prompt", | |
'image_url': "Image URL", | |
'output': "Model Output", | |
'image_display': "Input Image", | |
'submit': "Run Inference" | |
}, | |
'zh': { | |
'title': "Pixtral模型图像描述", | |
'text_prompt': "文本提示", | |
'image_url': "图片网址", | |
'output': "模型输出", | |
'image_display': "输入图片", | |
'submit': "运行推理" | |
}, | |
'jp': { | |
'title': "Pixtralモデルによる画像説明生成", | |
'text_prompt': "テキストプロンプト", | |
'image_url': "画像URL", | |
'output': "モデルの出力結果", | |
'image_display': "入力された画像", | |
'submit': "推論を実行" | |
} | |
} | |
return labels[language] | |
# Gradioインターフェース | |
def process_input(text, image_url): | |
result = mistral_inference(text, image_url) | |
return result, f'<img src="{image_url}" alt="Input Image" width="300">' | |
def update_ui(language): | |
labels = get_labels(language) | |
return labels['title'], labels['text_prompt'], labels['image_url'], labels['output'], labels['image_display'], labels['submit'] | |
# 初期URL | |
initial_url = "https://huggingface.co/spaces/aixsatoshi/Pixtral-12B/resolve/main/llamagiant.jpg" | |
with gr.Blocks() as demo: | |
language_choice = gr.Dropdown(choices=['en', 'zh', 'jp'], label="Select Language", value='en') | |
title = gr.Markdown("## Pixtral Model Image Description") | |
with gr.Row(): | |
text_input = gr.Textbox(label="Text Prompt", placeholder="e.g. Describe the image.") | |
image_input = gr.Textbox(label="Image URL", value=initial_url) # 初期URLを設定 | |
# 初期画像を表示 | |
result_output = gr.Textbox(label="Model Output", lines=8, max_lines=20) # 高さ500ピクセルに相当するように調整 | |
image_output = gr.HTML(f'<img src="{initial_url}" alt="Input Image" width="300">') # 入力された画像を最初から表示 | |
submit_button = gr.Button("Run Inference") | |
submit_button.click(process_input, inputs=[text_input, image_input], outputs=[result_output, image_output]) | |
# 言語変更時にUIラベルを更新 | |
language_choice.change( | |
fn=update_ui, | |
inputs=[language_choice], | |
outputs=[title, text_input, image_input, result_output, image_output, submit_button] | |
) | |
# 例の設定 | |
examples = [ | |
["Describe the scene.", "https://assets.st-note.com/production/uploads/images/138094970/rectangle_large_type_2_bc1a73623dc0e9bf8799832ddb4cd53e.png"], | |
["Describe the image.", "https://huggingface.co/datasets/patrickvonplaten/random_img/resolve/main/yosemite.png"], | |
["Describe the random generated image.", "https://picsum.photos/seed/picsum/200/300"], | |
["Describe the image.", "https://picsum.photos/id/32/512/512"] | |
] | |
gr.Examples(examples=examples, inputs=[text_input, image_input], label="Example Inputs") | |
demo.launch() |