|
import torch |
|
from PIL import Image |
|
import gradio as gr |
|
import spaces |
|
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer |
|
import os |
|
from threading import Thread |
|
|
|
|
|
HF_TOKEN = os.environ.get("HF_TOKEN", None) |
|
MODEL_ID = "aixsatoshi/Llama-3-youko-8b-instruct-chatvector" |
|
MODELS = os.environ.get("MODELS") |
|
MODEL_NAME = MODELS.split("/")[-1] |
|
|
|
TITLE = "<h1><center>Llama-3-youko-8b-instruct-chatvector</center></h1>" |
|
|
|
DESCRIPTION = f""" |
|
<h3>MODEL: <a href="https://hf.co/{MODELS}">{MODEL_NAME}</a></h3> |
|
<center> |
|
<p>youko-8b is the large language model built by rinna. |
|
<br> |
|
Feel free to test without log. |
|
</p> |
|
</center> |
|
""" |
|
|
|
CSS = """ |
|
.duplicate-button { |
|
margin: auto !important; |
|
color: white !important; |
|
background: black !important; |
|
border-radius: 100vh !important; |
|
} |
|
h3 { |
|
text-align: center; |
|
} |
|
""" |
|
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
MODELS, |
|
torch_dtype=torch.float16, |
|
device_map="auto", |
|
) |
|
tokenizer = AutoTokenizer.from_pretrained(MODELS) |
|
|
|
@spaces.GPU |
|
def stream_chat(message: str, history: list, temperature: float, max_new_tokens: int, top_p: float, top_k: int, penalty: float): |
|
print(f'message is - {message}') |
|
print(f'history is - {history}') |
|
conversation = [] |
|
for prompt, answer in history: |
|
conversation.extend([{"role": "user", "content": prompt}, {"role": "assistant", "content": answer}]) |
|
conversation.append({"role": "user", "content": message}) |
|
|
|
|
|
|
|
input_ids = tokenizer.apply_chat_template(conversation, tokenize=False, add_generation_prompt=True) |
|
inputs = tokenizer(input_ids, return_tensors="pt").to(0) |
|
|
|
streamer = TextIteratorStreamer(tokenizer, timeout=10., skip_prompt=True, skip_special_tokens=True) |
|
|
|
generate_kwargs = dict( |
|
inputs, |
|
streamer=streamer, |
|
top_k=top_k, |
|
top_p=top_p, |
|
repetition_penalty=penalty, |
|
max_new_tokens=max_new_tokens, |
|
do_sample=True, |
|
temperature=temperature, |
|
eos_token_id = [128001, 128009], |
|
) |
|
|
|
thread = Thread(target=model.generate, kwargs=generate_kwargs) |
|
thread.start() |
|
|
|
buffer = "" |
|
for new_text in streamer: |
|
buffer += new_text |
|
yield buffer |
|
|
|
|
|
|
|
chatbot = gr.Chatbot(height=500) |
|
|
|
with gr.Blocks(css=CSS) as demo: |
|
gr.HTML(TITLE) |
|
gr.HTML(DESCRIPTION) |
|
gr.ChatInterface( |
|
fn=stream_chat, |
|
chatbot=chatbot, |
|
fill_height=True, |
|
theme="soft", |
|
retry_btn=None, |
|
undo_btn="Delete Previous", |
|
clear_btn="Clear", |
|
additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False), |
|
additional_inputs=[ |
|
gr.Slider( |
|
minimum=0, |
|
maximum=1, |
|
step=0.1, |
|
value=0.8, |
|
label="Temperature", |
|
render=False, |
|
), |
|
gr.Slider( |
|
minimum=128, |
|
maximum=4096, |
|
step=1, |
|
value=1024, |
|
label="Max new tokens", |
|
render=False, |
|
), |
|
gr.Slider( |
|
minimum=0.0, |
|
maximum=1.0, |
|
step=0.1, |
|
value=0.8, |
|
label="top_p", |
|
render=False, |
|
), |
|
gr.Slider( |
|
minimum=1, |
|
maximum=20, |
|
step=1, |
|
value=20, |
|
label="top_k", |
|
render=False, |
|
), |
|
gr.Slider( |
|
minimum=0.0, |
|
maximum=2.0, |
|
step=0.1, |
|
value=1.0, |
|
label="Repetition penalty", |
|
render=False, |
|
), |
|
], |
|
examples=[ |
|
["Help me study vocabulary: write a sentence for me to fill in the blank, and I'll try to pick the correct option."], |
|
["What are 5 creative things I could do with my kids' art? I don't want to throw them away, but it's also so much clutter."], |
|
["Tell me a random fun fact about the Roman Empire."], |
|
["Show me a code snippet of a website's sticky header in CSS and JavaScript."], |
|
], |
|
cache_examples=False, |
|
) |
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
demo.launch() |
|
|