trainer: devices: '1' num_nodes: 1 model: inference_params: class_path: t2v_enhanced.model.pl_module_params_controlnet.InferenceParams init_args: num_inference_steps: 50 # number of inference steps frame_rate: 8 eta: 1.0 # eta used for DDIM sampler guidance_scale: 7.5 # classifier free guidance scale conditioning_type: fixed start_from_real_input: false n_autoregressive_generations: 6 # how many autoregressive generations scheduler_cls: '' # we can load other models unet_params: class_path: t2v_enhanced.model.pl_module_params_controlnet.UNetParams init_args: use_standard_attention_processor: False opt_params: class_path: t2v_enhanced.model.pl_module_params_controlnet.OptimizerParams init_args: noise_generator: class_path: t2v_enhanced.model.video_noise_generator.NoiseGenerator init_args: mode: vanilla # can be 'vanilla','mixed_noise', 'consistI2V' or 'mixed_noise_consistI2V' alpha: 1.0 shared_noise_across_chunks: True # if true, shared noise between all chunks of a video forward_steps: 850 # number of DDPM forward steps radius: [2,2,2] # radius for time, width and height n_predictions: 300 data: class_path: t2v_enhanced.model.datasets.prompt_reader.PromptReader init_args: prompt_cfg: type: file content: /home/roberto.henschel/T2V-Enhanced/repo/training_code/t2v_enhanced/evaluation_prompts/prompts_long_eval.txt