first commit with sahi vfnet
Browse files- app.py +64 -0
- labeled_data_vfnet_resnet50ms2x_640_bs8_maxbbox500.pth +3 -0
- packages.txt +1 -0
- requirements.txt +8 -0
- sqlot.jpg +0 -0
app.py
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from gradio import Label
|
2 |
+
from icevision.all import *
|
3 |
+
import gradio as gr
|
4 |
+
from icevision.models.checkpoint import *
|
5 |
+
import PIL
|
6 |
+
import gradio as gr
|
7 |
+
import os
|
8 |
+
|
9 |
+
from icevision.models.inference_sahi import IceSahiModel
|
10 |
+
|
11 |
+
|
12 |
+
|
13 |
+
|
14 |
+
# Load model
|
15 |
+
checkpoint_path = "labeled_data_vfnet_resnet50ms2x_640_bs8_maxbbox500.pth"
|
16 |
+
checkpoint_and_model = model_from_checkpoint(checkpoint_path)
|
17 |
+
model = checkpoint_and_model["model"]
|
18 |
+
model_type = checkpoint_and_model["model_type"]
|
19 |
+
class_map = checkpoint_and_model["class_map"]
|
20 |
+
|
21 |
+
# Transforms
|
22 |
+
img_size = checkpoint_and_model["img_size"]
|
23 |
+
valid_tfms = tfms.A.Adapter([*tfms.A.resize_and_pad(img_size), tfms.A.Normalize()])
|
24 |
+
|
25 |
+
# Populate examples in Gradio interface
|
26 |
+
examples = [
|
27 |
+
['./sqlot.jpg'],
|
28 |
+
]
|
29 |
+
sahimodel = IceSahiModel(model_type=model_type, model=model, class_map=class_map, tfms=valid_tfms, confidence_threshold=0.4)
|
30 |
+
|
31 |
+
def show_preds(input_image):
|
32 |
+
img = PIL.Image.fromarray(input_image, "RGB")
|
33 |
+
|
34 |
+
pred_dict = sahimodel.get_sliced_prediction(
|
35 |
+
img,
|
36 |
+
keep_sahi_format=False,
|
37 |
+
return_img=True,
|
38 |
+
slice_height = 512,
|
39 |
+
slice_width = 512,
|
40 |
+
overlap_height_ratio = 0.2,
|
41 |
+
overlap_width_ratio = 0.2,
|
42 |
+
display_label=True,
|
43 |
+
display_bbox=True)
|
44 |
+
|
45 |
+
|
46 |
+
# pred_dict = model_type.end2end_detect(img, valid_tfms, model,
|
47 |
+
# class_map=class_map,
|
48 |
+
# detection_threshold=0.5,
|
49 |
+
# display_label=True,
|
50 |
+
# display_bbox=True,
|
51 |
+
# return_img=True,
|
52 |
+
# font_size=15,
|
53 |
+
# label_color="#FF59D6")
|
54 |
+
return pred_dict["img"]
|
55 |
+
|
56 |
+
gr_interface = gr.Interface(
|
57 |
+
fn=show_preds,
|
58 |
+
inputs=["image"],
|
59 |
+
outputs=[gr.outputs.Image(type="pil", label="VFNET Inference with Sahi")],
|
60 |
+
title="Spaces Empty or Not?",
|
61 |
+
description="A VFNET model that detects whether parking spaces are empty or not. Upload an image or click an example image below to use.",
|
62 |
+
examples=examples,
|
63 |
+
)
|
64 |
+
gr_interface.launch(inline=False, share=False, debug=True)
|
labeled_data_vfnet_resnet50ms2x_640_bs8_maxbbox500.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c5a320b3b5e3b6d91a91d3aecbeaec877dfd8647f9b34396992c31436a1cde40
|
3 |
+
size 131192663
|
packages.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
python3-opencv
|
requirements.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
sahi
|
2 |
+
gradio
|
3 |
+
-f https://download.openmmlab.com/mmcv/dist/cpu/torch1.10.0/index.html
|
4 |
+
mmcv-full==1.3.17
|
5 |
+
git+https://github.com/airctic/icevision.git#egg=icevision[all]
|
6 |
+
git+https://github.com/airctic/icedata.git
|
7 |
+
mmdet==2.17.0
|
8 |
+
|
sqlot.jpg
ADDED
![]() |