Spaces:
Running
Running
File size: 11,676 Bytes
905dde8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 |
import gradio as gr
import pandas as pd
import requests
import json
import tiktoken
import matplotlib.pyplot as plt
# Constants
USD_TO_INR = 84
PRICES_URL = "https://raw.githubusercontent.com/BerriAI/litellm/main/model_prices_and_context_window.json"
# Fetch and process token costs
try:
response = requests.get(PRICES_URL)
if response.status_code == 200:
TOKEN_COSTS = response.json()
else:
raise Exception(f"Failed to fetch token costs, status code: {response.status_code}")
except Exception as e:
print(f'Failed to update token costs with error: {e}. Using static costs.')
with open("model_prices.json", "r") as f:
TOKEN_COSTS = json.load(f)
TOKEN_COSTS = pd.DataFrame.from_dict(TOKEN_COSTS, orient='index').reset_index()
TOKEN_COSTS.columns = ['model'] + list(TOKEN_COSTS.columns[1:])
TOKEN_COSTS = TOKEN_COSTS.loc[
(~TOKEN_COSTS["model"].str.contains("sample_spec"))
& (~TOKEN_COSTS["input_cost_per_token"].isnull())
& (~TOKEN_COSTS["output_cost_per_token"].isnull())
& (TOKEN_COSTS["input_cost_per_token"] > 0)
& (TOKEN_COSTS["output_cost_per_token"] > 0)
]
TOKEN_COSTS["supports_vision"] = TOKEN_COSTS["supports_vision"].fillna(False)
# Convert USD costs to INR
TOKEN_COSTS["input_cost_per_token"] *= USD_TO_INR
TOKEN_COSTS["output_cost_per_token"] *= USD_TO_INR
def clean_names(s):
s = s.replace("_", " ").replace("ai", "AI")
return s[0].upper() + s[1:]
TOKEN_COSTS["litellm_provider"] = TOKEN_COSTS["litellm_provider"].apply(clean_names)
cmap = plt.get_cmap('RdYlGn_r') # Red-Yellow-Green colormap, reversed
def count_string_tokens(string: str, model: str) -> int:
try:
encoding = tiktoken.encoding_for_model(model.split('/')[-1])
except:
if len(model.split('/')) > 1:
try:
encoding = tiktoken.encoding_for_model(model.split('/')[-2] + '/' + model.split('/')[-1])
except KeyError:
print(f"Model {model} not found. Using cl100k_base encoding.")
encoding = tiktoken.get_encoding("cl100k_base")
else:
print(f"Model {model} not found. Using cl100k_base encoding.")
encoding = tiktoken.get_encoding("cl100k_base")
return len(encoding.encode(string))
def calculate_total_cost(prompt_tokens: int, completion_tokens: int, model: str) -> float:
model_data = TOKEN_COSTS[TOKEN_COSTS['model'] == model].iloc[0]
prompt_cost = prompt_tokens * model_data['input_cost_per_token']
completion_cost = completion_tokens * model_data['output_cost_per_token']
return prompt_cost, completion_cost
def update_model_list(function_calling, litellm_provider, max_price, supports_vision, supports_max_input_tokens):
filtered_models = TOKEN_COSTS.loc[TOKEN_COSTS["max_input_tokens"] >= supports_max_input_tokens*1000]
if litellm_provider != "Any":
filtered_models = filtered_models[filtered_models['litellm_provider'] == litellm_provider]
if supports_vision:
filtered_models = filtered_models[filtered_models['supports_vision']]
list_models = filtered_models['model'].tolist()
return gr.Dropdown(choices=list_models, value=list_models[0] if list_models else "No model found for this combination!")
def compute_all(input_type, prompt_text, completion_text, prompt_tokens, completion_tokens, models):
results = []
temp=prompt_tokens
temp2=completion_tokens
for model in models:
if input_type == "Text Input":
prompt_tokens = count_string_tokens(prompt_text, model)
completion_tokens = count_string_tokens(completion_text, model)
else: # Token Count Input
prompt_tokens= int(prompt_tokens * 1000)
completion_tokens = int(completion_tokens * 1000)
model_data = TOKEN_COSTS[TOKEN_COSTS['model'] == model].iloc[0]
prompt_cost, completion_cost = calculate_total_cost(prompt_tokens, completion_tokens, model)
total_cost = prompt_cost + completion_cost
results.append({
"Model": model,
"Provider": model_data['litellm_provider'],
"Input Cost / M tokens": model_data['input_cost_per_token']*1e6,
"Output Cost / M tokens": model_data['output_cost_per_token']*1e6,
"Total Cost": round(total_cost, 2),
})
prompt_tokens=temp
completion_tokens=temp2
df = pd.DataFrame(results)
if len(df) > 1:
norm = plt.Normalize(df['Total Cost'].min(), df['Total Cost'].max())
def get_color(val):
color = cmap(norm(val))
return f'rgba({int(color[0]*255)}, {int(color[1]*255)}, {int(color[2]*255)}, 0.3)'
else:
def get_color(val):
return "rgba(0, 0, 0, 0)"
# Create the HTML table with animations
html_table = '<table class="styled-table">'
html_table += '<thead><tr>'
for col in df.columns:
html_table += f'<th>{col}</th>'
html_table += '</tr></thead><tbody>'
for i, row in df.iterrows():
html_table += f'<tr class="animate-row" style="animation-delay: {i * 0.1}s;">'
for col in df.columns:
value = row[col]
if col == 'Total Cost':
color = get_color(value)
html_table += f'<td class="total-cost" style="background-color: {color};">₹{value:.2f}</td>'
elif col in ["Input Cost / M tokens", "Output Cost / M tokens"]:
html_table += f'<td>₹{value:.2f}</td>'
else:
html_table += f'<td>{value}</td>'
html_table += '</tr>'
html_table += '</tbody></table>'
return html_table
def toggle_input_visibility(choice):
return (
gr.Group(visible=(choice == "Text Input")),
gr.Group(visible=(choice == "Token Count Input"))
)
with gr.Blocks(css="""
.styled-table {
border-collapse: separate;
border-spacing: 0;
margin: 25px 0;
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
width: 100%;
box-shadow: 0 0 20px rgba(0, 0, 0, 0.1);
border-radius: 12px;
overflow: hidden;
background-color: #f8f9fa;
}
.styled-table thead tr {
background-color: #3a506b;
color: #ffffff;
text-align: left;
font-weight: bold;
}
.styled-table th,
.styled-table td {
padding: 14px 18px;
border-bottom: 1px solid #e0e0e0;
}
.styled-table tbody tr {
transition: all 0.3s ease;
}
.styled-table tbody tr:nth-of-type(even) {
background-color: #f0f4f8;
}
.styled-table tbody tr:last-of-type {
border-bottom: 2px solid #3a506b;
}
.styled-table tbody tr:hover {
background-color: #e3e8ef;
transform: scale(1.02);
box-shadow: 0 0 10px rgba(0, 0, 0, 0.1);
}
.total-cost {
font-weight: bold;
transition: all 0.3s ease;
color: #2c3e50;
}
.total-cost:hover {
transform: scale(1.1);
color: #e74c3c;
}
@keyframes fadeIn {
from { opacity: 0; transform: translateY(20px); }
to { opacity: 1; transform: translateY(0); }
}
.animate-row {
animation: fadeIn 0.5s ease-out forwards;
opacity: 0;
}
.styled-table tbody tr td {
color: #34495e;
}
.styled-table tbody tr:hover td {
color: #2c3e50;
}
""", theme=gr.themes.Soft(primary_hue=gr.themes.colors.blue, secondary_hue=gr.themes.colors.slate)) as demo:
gr.Markdown("""
# 💰 Text-to-Rupees: Get the price of your LLM API calls in INR! 💰
Based on prices data from [BerriAI's litellm](https://github.com/BerriAI/litellm/blob/main/model_prices_and_context_window.json).
Prices converted to INR (1 USD = 84 INR).
""")
with gr.Row():
with gr.Column():
gr.Markdown("## Input type:")
input_type = gr.Radio(["Text Input", "Token Count Input"], label="Input Type", value="Text Input")
with gr.Group() as text_input_group:
prompt_text = gr.Textbox(label="Prompt", value="Tell me a joke about AI.", lines=3)
completion_text = gr.Textbox(label="Completion", value="Certainly: Why did the neural network go to therapy? It had too many deep issues!", lines=3)
with gr.Group(visible=False) as token_input_group:
prompt_tokens_input = gr.Number(label="Prompt Tokens (thousands)", value=1.5)
completion_tokens_input = gr.Number(label="Completion Tokens (thousands)", value=2)
with gr.Column():
gr.Markdown("## Model choice:")
with gr.Row():
with gr.Column():
function_calling = gr.Checkbox(label="Supports Tool Calling", value=False)
supports_vision = gr.Checkbox(label="Supports Vision", value=False)
with gr.Column():
supports_max_input_tokens = gr.Slider(label="Min Supported Input Length (thousands)", minimum=2, maximum=256, step=2, value=2)
max_price = gr.Slider(label="Max Price per Input Token", minimum=0, maximum=0.084, step=0.00084, value=0.084, visible=False, interactive=False)
litellm_provider = gr.Dropdown(label="Inference Provider", choices=["Any"] + TOKEN_COSTS['litellm_provider'].unique().tolist(), value="Any")
model = gr.Dropdown(label="Models (at least 1)", choices=TOKEN_COSTS['model'].tolist(), value=["anyscale/meta-llama/Meta-Llama-3-8B-Instruct", "gpt-4o", "claude-3-sonnet-20240229"], multiselect=True)
gr.Markdown("## Resulting Costs 👇")
with gr.Row():
results_table = gr.HTML()
input_type.change(
toggle_input_visibility,
inputs=[input_type],
outputs=[text_input_group, token_input_group]
)
gr.on(
triggers=[function_calling.change, litellm_provider.change, max_price.change, supports_vision.change, supports_max_input_tokens.change],
fn=update_model_list,
inputs=[function_calling, litellm_provider, max_price, supports_vision, supports_max_input_tokens],
outputs=model,
)
gr.on(
triggers=[
input_type.change,
prompt_text.change,
completion_text.change,
prompt_tokens_input.change,
completion_tokens_input.change,
function_calling.change,
litellm_provider.change,
supports_vision.change,
supports_max_input_tokens.change,
model.change
],
fn=compute_all,
inputs=[
input_type,
prompt_text,
completion_text,
prompt_tokens_input,
completion_tokens_input,
model
],
outputs=results_table
)
# Load results on page load
demo.load(
fn=compute_all,
inputs=[
input_type,
prompt_text,
completion_text,
prompt_tokens_input,
completion_tokens_input,
model
],
outputs=results_table
)
if __name__ == "__main__":
demo.launch() |