import gradio as gr
import pandas as pd
import requests
import json
import tiktoken
import matplotlib.pyplot as plt
# Constants
USD_TO_INR = 84
PRICES_URL = "https://raw.githubusercontent.com/BerriAI/litellm/main/model_prices_and_context_window.json"
# Fetch and process token costs
try:
response = requests.get(PRICES_URL)
if response.status_code == 200:
TOKEN_COSTS = response.json()
else:
raise Exception(f"Failed to fetch token costs, status code: {response.status_code}")
except Exception as e:
print(f'Failed to update token costs with error: {e}. Using static costs.')
with open("model_prices.json", "r") as f:
TOKEN_COSTS = json.load(f)
TOKEN_COSTS = pd.DataFrame.from_dict(TOKEN_COSTS, orient='index').reset_index()
TOKEN_COSTS.columns = ['model'] + list(TOKEN_COSTS.columns[1:])
TOKEN_COSTS = TOKEN_COSTS.loc[
(~TOKEN_COSTS["model"].str.contains("sample_spec"))
& (~TOKEN_COSTS["input_cost_per_token"].isnull())
& (~TOKEN_COSTS["output_cost_per_token"].isnull())
& (TOKEN_COSTS["input_cost_per_token"] > 0)
& (TOKEN_COSTS["output_cost_per_token"] > 0)
]
TOKEN_COSTS["supports_vision"] = TOKEN_COSTS["supports_vision"].fillna(False)
# Convert USD costs to INR
TOKEN_COSTS["input_cost_per_token"] *= USD_TO_INR
TOKEN_COSTS["output_cost_per_token"] *= USD_TO_INR
def clean_names(s):
s = s.replace("_", " ").replace("ai", "AI")
return s[0].upper() + s[1:]
TOKEN_COSTS["litellm_provider"] = TOKEN_COSTS["litellm_provider"].apply(clean_names)
cmap = plt.get_cmap('RdYlGn_r') # Red-Yellow-Green colormap, reversed
def count_string_tokens(string: str, model: str) -> int:
try:
encoding = tiktoken.encoding_for_model(model.split('/')[-1])
except:
if len(model.split('/')) > 1:
try:
encoding = tiktoken.encoding_for_model(model.split('/')[-2] + '/' + model.split('/')[-1])
except KeyError:
print(f"Model {model} not found. Using cl100k_base encoding.")
encoding = tiktoken.get_encoding("cl100k_base")
else:
print(f"Model {model} not found. Using cl100k_base encoding.")
encoding = tiktoken.get_encoding("cl100k_base")
return len(encoding.encode(string))
def calculate_total_cost(prompt_tokens: int, completion_tokens: int, model: str) -> float:
model_data = TOKEN_COSTS[TOKEN_COSTS['model'] == model].iloc[0]
prompt_cost = prompt_tokens * model_data['input_cost_per_token']
completion_cost = completion_tokens * model_data['output_cost_per_token']
return prompt_cost, completion_cost
def update_model_list(function_calling, litellm_provider, max_price, supports_vision, supports_max_input_tokens):
filtered_models = TOKEN_COSTS.loc[TOKEN_COSTS["max_input_tokens"] >= supports_max_input_tokens*1000]
if litellm_provider != "Any":
filtered_models = filtered_models[filtered_models['litellm_provider'] == litellm_provider]
if supports_vision:
filtered_models = filtered_models[filtered_models['supports_vision']]
list_models = filtered_models['model'].tolist()
return gr.Dropdown(choices=list_models, value=list_models[0] if list_models else "No model found for this combination!")
def compute_all(input_type, prompt_text, completion_text, prompt_tokens, completion_tokens, models):
results = []
temp=prompt_tokens
temp2=completion_tokens
for model in models:
if input_type == "Text Input":
prompt_tokens = count_string_tokens(prompt_text, model)
completion_tokens = count_string_tokens(completion_text, model)
else: # Token Count Input
prompt_tokens= int(prompt_tokens * 1000)
completion_tokens = int(completion_tokens * 1000)
model_data = TOKEN_COSTS[TOKEN_COSTS['model'] == model].iloc[0]
prompt_cost, completion_cost = calculate_total_cost(prompt_tokens, completion_tokens, model)
total_cost = prompt_cost + completion_cost
results.append({
"Model": model,
"Provider": model_data['litellm_provider'],
"Input Cost / M tokens": model_data['input_cost_per_token']*1e6,
"Output Cost / M tokens": model_data['output_cost_per_token']*1e6,
"Total Cost": round(total_cost, 2),
})
prompt_tokens=temp
completion_tokens=temp2
df = pd.DataFrame(results)
if len(df) > 1:
norm = plt.Normalize(df['Total Cost'].min(), df['Total Cost'].max())
def get_color(val):
color = cmap(norm(val))
return f'rgba({int(color[0]*255)}, {int(color[1]*255)}, {int(color[2]*255)}, 0.3)'
else:
def get_color(val):
return "rgba(0, 0, 0, 0)"
# Create the HTML table with animations
html_table = '
'
html_table += ''
for col in df.columns:
html_table += f'{col} | '
html_table += '
'
for i, row in df.iterrows():
html_table += f''
for col in df.columns:
value = row[col]
if col == 'Total Cost':
color = get_color(value)
html_table += f'₹{value:.2f} | '
elif col in ["Input Cost / M tokens", "Output Cost / M tokens"]:
html_table += f'₹{value:.2f} | '
else:
html_table += f'{value} | '
html_table += '
'
html_table += '
'
return html_table
def toggle_input_visibility(choice):
return (
gr.Group(visible=(choice == "Text Input")),
gr.Group(visible=(choice == "Token Count Input"))
)
with gr.Blocks(css="""
.styled-table {
border-collapse: separate;
border-spacing: 0;
margin: 25px 0;
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
width: 100%;
box-shadow: 0 0 20px rgba(0, 0, 0, 0.1);
border-radius: 12px;
overflow: hidden;
background-color: #f8f9fa;
}
.styled-table thead tr {
background-color: #3a506b;
color: #ffffff;
text-align: left;
font-weight: bold;
}
.styled-table th,
.styled-table td {
padding: 14px 18px;
border-bottom: 1px solid #e0e0e0;
}
.styled-table tbody tr {
transition: all 0.3s ease;
}
.styled-table tbody tr:nth-of-type(even) {
background-color: #f0f4f8;
}
.styled-table tbody tr:last-of-type {
border-bottom: 2px solid #3a506b;
}
.styled-table tbody tr:hover {
background-color: #e3e8ef;
transform: scale(1.02);
box-shadow: 0 0 10px rgba(0, 0, 0, 0.1);
}
.total-cost {
font-weight: bold;
transition: all 0.3s ease;
color: #2c3e50;
}
.total-cost:hover {
transform: scale(1.1);
color: #e74c3c;
}
@keyframes fadeIn {
from { opacity: 0; transform: translateY(20px); }
to { opacity: 1; transform: translateY(0); }
}
.animate-row {
animation: fadeIn 0.5s ease-out forwards;
opacity: 0;
}
.styled-table tbody tr td {
color: #34495e;
}
.styled-table tbody tr:hover td {
color: #2c3e50;
}
""", theme=gr.themes.Soft(primary_hue=gr.themes.colors.blue, secondary_hue=gr.themes.colors.slate)) as demo:
gr.Markdown("""
# 💰 Text-to-Rupees: Get the price of your LLM API calls in INR! 💰
Based on prices data from [BerriAI's litellm](https://github.com/BerriAI/litellm/blob/main/model_prices_and_context_window.json).
Prices converted to INR (1 USD = 84 INR).
""")
with gr.Row():
with gr.Column():
gr.Markdown("## Input type:")
input_type = gr.Radio(["Text Input", "Token Count Input"], label="Input Type", value="Text Input")
with gr.Group() as text_input_group:
prompt_text = gr.Textbox(label="Prompt", value="Tell me a joke about AI.", lines=3)
completion_text = gr.Textbox(label="Completion", value="Certainly: Why did the neural network go to therapy? It had too many deep issues!", lines=3)
with gr.Group(visible=False) as token_input_group:
prompt_tokens_input = gr.Number(label="Prompt Tokens (thousands)", value=1.5)
completion_tokens_input = gr.Number(label="Completion Tokens (thousands)", value=2)
with gr.Column():
gr.Markdown("## Model choice:")
with gr.Row():
with gr.Column():
function_calling = gr.Checkbox(label="Supports Tool Calling", value=False)
supports_vision = gr.Checkbox(label="Supports Vision", value=False)
with gr.Column():
supports_max_input_tokens = gr.Slider(label="Min Supported Input Length (thousands)", minimum=2, maximum=256, step=2, value=2)
max_price = gr.Slider(label="Max Price per Input Token", minimum=0, maximum=0.084, step=0.00084, value=0.084, visible=False, interactive=False)
litellm_provider = gr.Dropdown(label="Inference Provider", choices=["Any"] + TOKEN_COSTS['litellm_provider'].unique().tolist(), value="Any")
model = gr.Dropdown(label="Models (at least 1)", choices=TOKEN_COSTS['model'].tolist(), value=["anyscale/meta-llama/Meta-Llama-3-8B-Instruct", "gpt-4o", "claude-3-sonnet-20240229"], multiselect=True)
gr.Markdown("## Resulting Costs 👇")
with gr.Row():
results_table = gr.HTML()
input_type.change(
toggle_input_visibility,
inputs=[input_type],
outputs=[text_input_group, token_input_group]
)
gr.on(
triggers=[function_calling.change, litellm_provider.change, max_price.change, supports_vision.change, supports_max_input_tokens.change],
fn=update_model_list,
inputs=[function_calling, litellm_provider, max_price, supports_vision, supports_max_input_tokens],
outputs=model,
)
gr.on(
triggers=[
input_type.change,
prompt_text.change,
completion_text.change,
prompt_tokens_input.change,
completion_tokens_input.change,
function_calling.change,
litellm_provider.change,
supports_vision.change,
supports_max_input_tokens.change,
model.change
],
fn=compute_all,
inputs=[
input_type,
prompt_text,
completion_text,
prompt_tokens_input,
completion_tokens_input,
model
],
outputs=results_table
)
# Load results on page load
demo.load(
fn=compute_all,
inputs=[
input_type,
prompt_text,
completion_text,
prompt_tokens_input,
completion_tokens_input,
model
],
outputs=results_table
)
if __name__ == "__main__":
demo.launch()