entity_to_acronyms = { 'Activity': 'ACT', 'Administration': 'ADM', 'Age': 'AGE', 'Area': 'ARA', 'Biological_attribute': 'BAT', 'Biological_structure': 'BST', 'Clinical_event': 'CLE', 'Color': 'COL', 'Coreference': 'COR', 'Date': 'DAT', 'Detailed_description': 'DET', 'Diagnostic_procedure': 'DIA', 'Disease_disorder': 'DIS', 'Distance': 'DIS', 'Dosage': 'DOS', 'Duration': 'DUR', 'Family_history': 'FAM', 'Frequency': 'FRE', 'Height': 'HEI', 'History': 'HIS', 'Lab_value': 'LAB', 'Mass': 'MAS', 'Medication': 'MED', 'Nonbiological_location': 'NBL', 'Occupation': 'OCC', 'Other_entity': 'OTH', 'Other_event': 'OTE', 'Outcome': 'OUT', 'Personal_background': 'PER', 'Qualitative_concept': 'QUC', 'Quantitative_concept': 'QUC', 'Severity': 'SEV', 'Sex': 'SEX', 'Shape': 'SHA', 'Sign_symptom': 'SIG', 'Subject': 'SUB', 'Texture': 'TEX', 'Therapeutic_procedure': 'THP', 'Time': 'TIM', 'Volume': 'VOL', 'Weight': 'WEI' } index_to_label = {1: 'B-ACT', 2: 'B-ADM', 3: 'B-AGE', 4: 'B-ARA', 5: 'B-BAT', 6: 'B-BST', 7: 'B-CLE', 8: 'B-COL', 9: 'B-COR', 10: 'B-DAT', 11: 'B-DET', 12: 'B-DIA', 13: 'B-DIS', 14: 'B-DOS', 15: 'B-DUR', 16: 'B-FAM', 17: 'B-FRE', 18: 'B-HEI', 19: 'B-HIS', 20: 'B-LAB', 21: 'B-MAS', 22: 'B-MED', 23: 'B-NBL', 24: 'B-OCC', 25: 'B-OTE', 26: 'B-OTH', 27: 'B-OUT', 28: 'B-PER', 29: 'B-QUC', 30: 'B-SEV', 31: 'B-SEX', 32: 'B-SHA', 33: 'B-SIG', 34: 'B-SUB', 35: 'B-TEX', 36: 'B-THP', 37: 'B-TIM', 38: 'B-VOL', 39: 'B-WEI', 40: 'I-ACT', 41: 'I-ADM', 42: 'I-AGE', 43: 'I-ARA', 44: 'I-BAT', 45: 'I-BST', 46: 'I-CLE', 47: 'I-COL', 48: 'I-COR', 49: 'I-DAT', 50: 'I-DET', 51: 'I-DIA', 52: 'I-DIS', 53: 'I-DOS', 54: 'I-DUR', 55: 'I-FAM', 56: 'I-FRE', 57: 'I-HEI', 58: 'I-HIS', 59: 'I-LAB', 60: 'I-MAS', 61: 'I-MED', 62: 'I-NBL', 63: 'I-OCC', 64: 'I-OTE', 65: 'I-OTH', 66: 'I-OUT', 67: 'I-PER', 68: 'I-QUC', 69: 'I-SEV', 70: 'I-SHA', 71: 'I-SIG', 72: 'I-SUB', 73: 'I-TEX', 74: 'I-THP', 75: 'I-TIM', 76: 'I-VOL', 77: 'I-WEI', 78: 'O', 0: ''} MAX_LENGTH = 100 acronyms_to_entities = {v: k for k, v in entity_to_acronyms.items()} models = { "model_1": { "path": "model/model_1.h5", "title": "Bidirectional LSTM Model with single LSTM layer" }, }