Spaces:
Runtime error
Runtime error
Ajay Karthick Senthil Kumar
commited on
Commit
·
416dc49
1
Parent(s):
381c43b
add streamlit
Browse files
app.py
ADDED
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import numpy as np
|
3 |
+
import pandas as pd
|
4 |
+
import librosa
|
5 |
+
from io import BytesIO
|
6 |
+
import matplotlib.pyplot as plt
|
7 |
+
|
8 |
+
from src.features.extraction.low_level_features_extractor import LowLevelFeatureExtractor
|
9 |
+
from src.features.extraction.high_level_features_extractor import HighLevelFeatureExtractor
|
10 |
+
from src.models.predict import predict
|
11 |
+
|
12 |
+
# Set page layout
|
13 |
+
st.set_page_config(page_title="Audio Deepfake Detection", layout="wide")
|
14 |
+
|
15 |
+
# Add a custom style for background and font
|
16 |
+
st.markdown("""
|
17 |
+
<style>
|
18 |
+
.main {
|
19 |
+
background-color: #f7f9fc;
|
20 |
+
}
|
21 |
+
.title {
|
22 |
+
font-family: 'Courier New', Courier, monospace;
|
23 |
+
color: #493628;
|
24 |
+
}
|
25 |
+
.section-header {
|
26 |
+
font-size: 24px;
|
27 |
+
font-weight: bold;
|
28 |
+
margin-top: 10px; /* Reduced margin to minimize vertical gap */
|
29 |
+
}
|
30 |
+
.confidence-score {
|
31 |
+
font-size: 20px;
|
32 |
+
font-weight: bold;
|
33 |
+
color: #ff6f61;
|
34 |
+
}
|
35 |
+
</style>
|
36 |
+
""", unsafe_allow_html=True)
|
37 |
+
|
38 |
+
# App title
|
39 |
+
st.markdown('<h1 class="title">Audio Deepfake Detection</h1>', unsafe_allow_html=True)
|
40 |
+
st.write("This application helps you detect whether an audio file is a deepfake or genuine.")
|
41 |
+
|
42 |
+
# File uploader
|
43 |
+
uploaded_file = st.file_uploader("Choose an audio file", type=["wav", "mp3", "ogg"])
|
44 |
+
|
45 |
+
# Extract features from audio
|
46 |
+
def extract_features(audio_data, sample_rate):
|
47 |
+
df = pd.DataFrame({
|
48 |
+
'audio_id': [0],
|
49 |
+
'audio_arr': [audio_data],
|
50 |
+
'srate': [sample_rate],
|
51 |
+
'real_or_fake': [0]
|
52 |
+
})
|
53 |
+
audio_processor = LowLevelFeatureExtractor(target_sr=16000, include_only=['spectral', 'prosodic', 'voice_quality'])
|
54 |
+
feature_computer = HighLevelFeatureExtractor()
|
55 |
+
low_level_gen = audio_processor.low_level_feature_generator(df)
|
56 |
+
high_level_features = list(feature_computer.high_level_feature_generator(low_level_gen))
|
57 |
+
features_df = pd.DataFrame(high_level_features)
|
58 |
+
return features_df
|
59 |
+
|
60 |
+
# Plot waveform
|
61 |
+
def plot_waveform(audio_data, sample_rate):
|
62 |
+
fig, ax = plt.subplots(figsize=(10, 2)) # Wide and short waveform plot
|
63 |
+
ax.plot(np.linspace(0, len(audio_data) / sample_rate, len(audio_data)), audio_data)
|
64 |
+
ax.set_xlabel("Time (s)")
|
65 |
+
ax.set_ylabel("Amplitude")
|
66 |
+
st.pyplot(fig)
|
67 |
+
|
68 |
+
# Process the uploaded file
|
69 |
+
if uploaded_file is not None:
|
70 |
+
# Use columns to display the audio player, waveform, prediction, and confidence side by side
|
71 |
+
col1, col2 = st.columns(2)
|
72 |
+
|
73 |
+
with col1:
|
74 |
+
st.subheader("Uploaded Audio")
|
75 |
+
st.audio(uploaded_file)
|
76 |
+
|
77 |
+
# Show waveform
|
78 |
+
st.subheader("Audio Waveform")
|
79 |
+
audio_bytes = uploaded_file.read()
|
80 |
+
audio_data, sample_rate = librosa.load(BytesIO(audio_bytes), sr=None)
|
81 |
+
plot_waveform(audio_data, sample_rate)
|
82 |
+
|
83 |
+
with col2:
|
84 |
+
# Extract features
|
85 |
+
features_df = extract_features(audio_data, sample_rate)
|
86 |
+
|
87 |
+
predictions, prediction_probabilities = predict(features_df)
|
88 |
+
|
89 |
+
# Display prediction and confidence score
|
90 |
+
st.subheader("Prediction Results")
|
91 |
+
|
92 |
+
prediction = predictions[0]
|
93 |
+
confidence_score = prediction_probabilities[0][1] * 100
|
94 |
+
|
95 |
+
if prediction == 1:
|
96 |
+
st.error("This audio is classified as a Deepfake!")
|
97 |
+
else:
|
98 |
+
st.success("This audio is classified as Genuine!")
|
99 |
+
|
100 |
+
# Show confidence score using a progress bar
|
101 |
+
st.markdown('<h3 class="confidence-score">Confidence Score</h3>', unsafe_allow_html=True)
|
102 |
+
st.progress(confidence_score / 100)
|
103 |
+
|
104 |
+
st.write(f"The model is {confidence_score:.2f}% confident in its prediction.")
|
105 |
+
|
106 |
+
# Footer or additional information
|
107 |
+
st.markdown('<h2 class="section-header">How It Works</h2>', unsafe_allow_html=True)
|
108 |
+
st.write("""
|
109 |
+
This app uses machine learning models trained on various audio features, such as spectral, prosodic, and voice quality metrics.
|
110 |
+
It analyzes the audio to classify whether it is a genuine recording or a deepfake, providing a confidence score for its prediction.
|
111 |
+
""")
|