Spaces:
Sleeping
Sleeping
File size: 4,430 Bytes
3c4e014 7a69d96 5be946a 7a69d96 a09cbc2 ace2b2b fdd82d8 702d4ed a09cbc2 ee87c6a 702d4ed 385bfcf 702d4ed 3e027f8 702d4ed 74d109e 5be946a 74d109e 738d0f3 b7473ec ace2b2b a09cbc2 74d109e 734cf6a 74d109e a09cbc2 74d109e a09cbc2 702d4ed ace2b2b 702d4ed ace2b2b 5f84801 ace2b2b 5f84801 ace2b2b 5f84801 ace2b2b 702d4ed 7a69d96 3c4e014 ace2b2b 3c4e014 7a69d96 fdd82d8 702d4ed 3e027f8 74d109e e468338 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 |
import gradio as gr
from datasets import load_dataset
from transformers import AutoTokenizer, AutoModelForQuestionAnswering
import torch
import logging
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
from fastapi.middleware.cors import CORSMiddleware
# Set up logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
# Load dataset
logger.info("Loading the dataset")
ds = load_dataset("knowrohit07/gita_dataset")
logger.info("Dataset loaded successfully")
# Load model and tokenizer
logger.info("Loading the model and tokenizer")
model_name = "deepset/roberta-large-squad2"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForQuestionAnswering.from_pretrained(model_name)
logger.info("Model and tokenizer loaded successfully")
def clean_answer(answer):
special_tokens = set(tokenizer.all_special_tokens)
cleaned_answer = ' '.join(token for token in answer.split() if token not in special_tokens)
return cleaned_answer.strip()
def answer_question(question):
logger.info(f"Received question: {question}")
try:
logger.info("Combining text from dataset")
context = " ".join([item.get('Text', '') for item in ds['train']])
logger.info(f"Combined context length: {len(context)} characters")
logger.info("Tokenizing input")
inputs = tokenizer.encode_plus(question, context, return_tensors="pt", max_length=512, truncation=True)
logger.info(f"Input tokens shape: {inputs['input_ids'].shape}")
logger.info("Getting model output")
outputs = model(**inputs)
logger.info(f"Output logits shapes: start={outputs.start_logits.shape}, end={outputs.end_logits.shape}")
logger.info("Processing output to get answer")
answer_start = torch.argmax(outputs.start_logits)
answer_end = torch.argmax(outputs.end_logits) + 1
raw_answer = tokenizer.convert_tokens_to_string(tokenizer.convert_ids_to_tokens(inputs["input_ids"][0][answer_start:answer_end]))
answer = clean_answer(raw_answer)
logger.info(f"Generated answer: {answer}")
if not answer:
logger.warning("Generated answer was empty after cleaning")
answer = "I'm sorry, but I couldn't find a specific answer to that question based on the Bhagavad Gita. Could you please rephrase your question or ask about one of the core concepts like dharma, karma, bhakti, or the different types of yoga discussed in the Gita?"
logger.info("Answer generated successfully")
return answer
except Exception as e:
logger.error(f"Error in answer_question function: {str(e)}")
return "I'm sorry, but an error occurred while processing your question. Please try again later."
# FastAPI setup
app = FastAPI()
# Add CORS middleware
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
class Question(BaseModel):
messages: list
@app.post("/predict")
async def predict(question: Question):
try:
last_user_message = next((msg for msg in reversed(question.messages) if msg['role'] == 'user'), None)
if not last_user_message:
raise HTTPException(status_code=400, detail="No user message found")
user_question = last_user_message['content']
answer = answer_question(user_question)
disclaimer = "\n\n---Please note: This response is generated by an AI model based on the Bhagavad Gita. For authoritative information, please consult the original text or scholarly sources."
full_response = answer + disclaimer
return {"response": full_response, "isTruncated": False}
except Exception as e:
logger.error(f"Error in predict function: {str(e)}")
raise HTTPException(status_code=500, detail=str(e))
# Gradio interface
iface = gr.Interface(
fn=answer_question,
inputs=gr.Textbox(lines=2, placeholder="Enter your question here..."),
outputs="text",
title="Bhagavad Gita Q&A",
description="Ask a question about the Bhagavad Gita, and get an answer based on the dataset."
)
# Mount Gradio app to FastAPI
app = gr.mount_gradio_app(app, iface, path="/")
# For local development and testing
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=7860) |