ajayx2006 commited on
Commit
eafc2c4
·
verified ·
1 Parent(s): 38660ae

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +45 -62
app.py CHANGED
@@ -1,63 +1,46 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
- """
43
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
44
- """
45
- demo = gr.ChatInterface(
46
- respond,
47
- additional_inputs=[
48
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
49
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
50
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
51
- gr.Slider(
52
- minimum=0.1,
53
- maximum=1.0,
54
- value=0.95,
55
- step=0.05,
56
- label="Top-p (nucleus sampling)",
57
- ),
58
- ],
59
- )
60
-
61
-
62
- if __name__ == "__main__":
63
- demo.launch()
 
1
  import gradio as gr
2
+ from groq import Groq
3
+
4
+ # Set up the Groq client
5
+ client = Groq(api_key="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")
6
+
7
+ # Set the system prompt
8
+ system_prompt = """You are a helpful, respectful and professional assistant.
9
+ the conversation should be shorter.
10
+ Your task is to assist a marketing team in getting the budget and providing market strategies according to the budget and the platforms they're running ads on.
11
+ The platforms include Google and Meta.
12
+ You should consider the budget, the target audience, the goals of the campaign, and the strengths and weaknesses of each platform when providing market strategies.
13
+ the content should be optimized and summerized.
14
+ make the budget in Indian ruppes."""
15
+
16
+ # Initialize an empty list to store the conversation history
17
+ conversation_history = []
18
+
19
+ # Define a function to handle user messages
20
+ def handle_message(user_message):
21
+ # Add the user's message to the conversation history
22
+ conversation_history.append({"role": "user", "content": user_message})
23
+
24
+ # Use the Groq client to get a response from the language model
25
+ chat_completion = client.chat.completions.create(
26
+ messages=[
27
+ {
28
+ "role": "system",
29
+ "content": system_prompt,
30
+ },
31
+ *conversation_history
32
+ ],
33
+ model="llama3-8b-8192",
34
+ )
35
+
36
+ # Add the language model's response to the conversation history
37
+ conversation_history.append({"role": "assistant", "content": chat_completion.choices[0].message.content})
38
+
39
+ # Return the language model's response
40
+ return chat_completion.choices[0].message.content
41
+
42
+ # Create a Gradio interface with a chatbot component
43
+ iface = gr.Interface(fn=handle_message, inputs="text", outputs="text", title="Quantum Marketing AI")
44
+
45
+ # Launch the interface
46
+ iface.launch(share=True)