Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,63 +1,46 @@
|
|
1 |
import gradio as gr
|
2 |
-
from
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
additional_inputs=[
|
48 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
49 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
50 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
51 |
-
gr.Slider(
|
52 |
-
minimum=0.1,
|
53 |
-
maximum=1.0,
|
54 |
-
value=0.95,
|
55 |
-
step=0.05,
|
56 |
-
label="Top-p (nucleus sampling)",
|
57 |
-
),
|
58 |
-
],
|
59 |
-
)
|
60 |
-
|
61 |
-
|
62 |
-
if __name__ == "__main__":
|
63 |
-
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
from groq import Groq
|
3 |
+
|
4 |
+
# Set up the Groq client
|
5 |
+
client = Groq(api_key="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")
|
6 |
+
|
7 |
+
# Set the system prompt
|
8 |
+
system_prompt = """You are a helpful, respectful and professional assistant.
|
9 |
+
the conversation should be shorter.
|
10 |
+
Your task is to assist a marketing team in getting the budget and providing market strategies according to the budget and the platforms they're running ads on.
|
11 |
+
The platforms include Google and Meta.
|
12 |
+
You should consider the budget, the target audience, the goals of the campaign, and the strengths and weaknesses of each platform when providing market strategies.
|
13 |
+
the content should be optimized and summerized.
|
14 |
+
make the budget in Indian ruppes."""
|
15 |
+
|
16 |
+
# Initialize an empty list to store the conversation history
|
17 |
+
conversation_history = []
|
18 |
+
|
19 |
+
# Define a function to handle user messages
|
20 |
+
def handle_message(user_message):
|
21 |
+
# Add the user's message to the conversation history
|
22 |
+
conversation_history.append({"role": "user", "content": user_message})
|
23 |
+
|
24 |
+
# Use the Groq client to get a response from the language model
|
25 |
+
chat_completion = client.chat.completions.create(
|
26 |
+
messages=[
|
27 |
+
{
|
28 |
+
"role": "system",
|
29 |
+
"content": system_prompt,
|
30 |
+
},
|
31 |
+
*conversation_history
|
32 |
+
],
|
33 |
+
model="llama3-8b-8192",
|
34 |
+
)
|
35 |
+
|
36 |
+
# Add the language model's response to the conversation history
|
37 |
+
conversation_history.append({"role": "assistant", "content": chat_completion.choices[0].message.content})
|
38 |
+
|
39 |
+
# Return the language model's response
|
40 |
+
return chat_completion.choices[0].message.content
|
41 |
+
|
42 |
+
# Create a Gradio interface with a chatbot component
|
43 |
+
iface = gr.Interface(fn=handle_message, inputs="text", outputs="text", title="Quantum Marketing AI")
|
44 |
+
|
45 |
+
# Launch the interface
|
46 |
+
iface.launch(share=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|