Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -4,10 +4,24 @@ import torchaudio
|
|
4 |
import warnings
|
5 |
import fasttext # Import fastText for language detection
|
6 |
import pandas as pd
|
|
|
|
|
7 |
|
8 |
# Suppress specific warnings related to PySoundFile fallback
|
9 |
warnings.filterwarnings("ignore", category=UserWarning, message="PySoundFile failed.*")
|
10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
# Load models
|
12 |
whisper_model_name = "openai/whisper-large"
|
13 |
processor = WhisperProcessor.from_pretrained(whisper_model_name)
|
@@ -16,9 +30,6 @@ whisper_model = WhisperForConditionalGeneration.from_pretrained(whisper_model_na
|
|
16 |
# Load Helsinki-NLP's opus-100 translation model
|
17 |
translation_model = pipeline("translation", model="Helsinki-NLP/opus-mt-ROMANCE-en") # A multilingual model from Opus-100
|
18 |
|
19 |
-
# Load the fastText language detection model
|
20 |
-
lang_model = fasttext.load_model('./lid.176.bin') # This is the pre-trained model for language detection
|
21 |
-
|
22 |
# Initialize history tracking
|
23 |
history_data = [] # List to track transcription, detected language, translation, and confidence score
|
24 |
|
|
|
4 |
import warnings
|
5 |
import fasttext # Import fastText for language detection
|
6 |
import pandas as pd
|
7 |
+
import urllib.request
|
8 |
+
import os
|
9 |
|
10 |
# Suppress specific warnings related to PySoundFile fallback
|
11 |
warnings.filterwarnings("ignore", category=UserWarning, message="PySoundFile failed.*")
|
12 |
|
13 |
+
# Define a temporary path to store the large model file
|
14 |
+
temp_model_path = '/tmp/lid.176.bin'
|
15 |
+
|
16 |
+
# Check if the model already exists in the temporary path, and download it if not
|
17 |
+
if not os.path.exists(temp_model_path):
|
18 |
+
# Download the file from Hugging Face URL
|
19 |
+
url = "https://huggingface.co/julien-c/fasttext-language-id/resolve/0266da4549434de56667387618bc67dc6d2670ef/lid.176.bin"
|
20 |
+
urllib.request.urlretrieve(url, temp_model_path)
|
21 |
+
|
22 |
+
# Load the model from the temporary path
|
23 |
+
lang_model = fasttext.load_model(temp_model_path)
|
24 |
+
|
25 |
# Load models
|
26 |
whisper_model_name = "openai/whisper-large"
|
27 |
processor = WhisperProcessor.from_pretrained(whisper_model_name)
|
|
|
30 |
# Load Helsinki-NLP's opus-100 translation model
|
31 |
translation_model = pipeline("translation", model="Helsinki-NLP/opus-mt-ROMANCE-en") # A multilingual model from Opus-100
|
32 |
|
|
|
|
|
|
|
33 |
# Initialize history tracking
|
34 |
history_data = [] # List to track transcription, detected language, translation, and confidence score
|
35 |
|