|
import torch |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
import gradio as gr |
|
|
|
|
|
model_name = "gpt2-large" |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
|
|
tokenizer.pad_token = tokenizer.eos_token |
|
model = AutoModelForCausalLM.from_pretrained(model_name) |
|
|
|
|
|
def generate_text(input_text, max_length=32, num_beams=5, do_sample=False, no_repeat_ngram_size=2): |
|
""" |
|
Generate text based on the given input text. |
|
Parameters: |
|
- input_text (str): The input text to start generation from. |
|
- max_length (int): Maximum length of the generated text. |
|
- num_beams (int): Number of beams for beam search. |
|
- do_sample (bool): Whether to use sampling or not. |
|
- no_repeat_ngram_size (int): Size of the n-gram to avoid repetition. |
|
Returns: |
|
- generated_text (str): The generated text. |
|
""" |
|
|
|
input_ids = tokenizer(input_text, return_tensors='pt', padding=True)['input_ids'] |
|
|
|
output = model.generate(input_ids, max_length=max_length, num_beams=num_beams, |
|
do_sample=do_sample, no_repeat_ngram_size=no_repeat_ngram_size) |
|
|
|
generated_text = tokenizer.decode(output[0], skip_special_tokens=True) |
|
return generated_text |
|
|
|
|
|
|
|
input_text = gr.Textbox(lines=10, label="Input Text", placeholder="Enter text for text generation...") |
|
output_text = gr.Textbox(label="Generated Text") |
|
|
|
gr.Interface(generate_text, input_text, output_text, |
|
title="Text Generation with GPT-2", |
|
description="Generate text using the GPT-2 model.", |
|
theme="default", |
|
allow_flagging="never").launch() |
|
|