Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Use a pipeline as a high-level helper
|
2 |
+
import torch
|
3 |
+
from transformers import pipeline
|
4 |
+
from scipy.io import wavfile
|
5 |
+
from PIL import Image
|
6 |
+
import gradio as gr
|
7 |
+
|
8 |
+
|
9 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
10 |
+
image_pipe = pipeline("image-to-text", model="Salesforce/blip-image-captioning-large",device=device)
|
11 |
+
narator = pipeline("text-to-speech", model="kakao-enterprise/vits-ljs",device=device)
|
12 |
+
|
13 |
+
def generate_audio(text):
|
14 |
+
# generate the audio from the text
|
15 |
+
audio_text = narator(text)
|
16 |
+
# save the audio to a WAV file
|
17 |
+
wavfile.write(filename="audio.wav",
|
18 |
+
rate=audio_text['sampling_rate'],
|
19 |
+
data=audio_text['audio'][0])
|
20 |
+
return "audio.wav"
|
21 |
+
|
22 |
+
|
23 |
+
def caption_my_image(image_path):
|
24 |
+
image = image_pipe(image_path)
|
25 |
+
caption_text = image[0]['generated_text']
|
26 |
+
return generate_audio(caption_text)
|
27 |
+
|
28 |
+
|
29 |
+
demo = gr.Interface(fn=caption_my_image,
|
30 |
+
inputs=[gr.Image(label="Image",type="pil")],
|
31 |
+
outputs=[gr.Audio(label="Image Caption")],
|
32 |
+
title="@SmartChoiceLearningHubs HF project 1 :Image to Text to Speech",
|
33 |
+
description="This app generates a caption for an image and converts the caption to speech.")
|
34 |
+
|
35 |
+
demo.launch()
|