Spaces:
Paused
Paused
File size: 1,716 Bytes
29b560e 314c465 a22e0d4 3b47068 e73ae0d 29b560e a22e0d4 06e297b a22e0d4 06e297b a22e0d4 e73ae0d 73c4071 41caafb a22e0d4 47728bf e73ae0d 0580074 74704c7 e73ae0d 874ae6d 47728bf dde5ace dc9192f e73ae0d 7dfeb8a e73ae0d 31bbafb 4952bf3 47728bf a22e0d4 29b560e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 |
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
from threading import Thread
MODEL = "NTQAI/Nxcode-CQ-7B-orpo"
system_message = "You are a computer programmer that can translate python code to C++ in order to improve performance"
def user_prompt_for(python):
return f"Rewrite this python code to C++. You must search for the maximum performance. \
Format your response in Markdown. This is the python Code: \
\n\n\
{python}"
def messages_for(python):
return [
{"role": "system", "content": system_message},
{"role": "user", "content": user_prompt_for(python)}
]
tokenizer = AutoTokenizer.from_pretrained(MODEL)
model = AutoModelForCausalLM.from_pretrained(MODEL, torch_dtype="auto", device_map="auto")
decode_kwargs = dict(skip_special_tokens=True)
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, decode_kwargs=decode_kwargs)
cplusplus = None
def translate(python):
inputs = tokenizer.apply_chat_template(
messages_for(python),
add_generation_prompt=True,
return_tensors="pt").to(model.device)
generation_kwargs = dict(
input_ids=inputs,
streamer=streamer,
max_new_tokens=512,
do_sample=True,
top_k=50,
top_p=0.95,
num_return_sequences=1,
eos_token_id=tokenizer.eos_token_id,
)
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
cplusplus = ""
for chunk in streamer:
cplusplus += chunk
yield cplusplus
demo = gr.Interface(fn=translate, inputs="code", outputs="markdown")
demo.launch()
|