import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer from threading import Thread MODEL = "NTQAI/Nxcode-CQ-7B-orpo" system_message = "You are a computer programmer that can translate python code to C++ in order to improve performance" def user_prompt_for(python): return f"Rewrite this python code to C++. You must search for the maximum performance. \ Format your response in Markdown. This is the python Code: \ \n\n\ {python}" def messages_for(python): return [ {"role": "system", "content": system_message}, {"role": "user", "content": user_prompt_for(python)} ] tokenizer = AutoTokenizer.from_pretrained(MODEL) model = AutoModelForCausalLM.from_pretrained(MODEL, torch_dtype="auto", device_map="auto") decode_kwargs = dict(skip_special_tokens=True) streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, decode_kwargs=decode_kwargs) cplusplus = None def translate(python): inputs = tokenizer.apply_chat_template( messages_for(python), add_generation_prompt=True, return_tensors="pt").to(model.device) generation_kwargs = dict( input_ids=inputs, streamer=streamer, max_new_tokens=512, do_sample=False, top_k=50, top_p=0.95, num_return_sequences=1, eos_token_id=tokenizer.eos_token_id, ) thread = Thread(target=model.generate, kwargs=generation_kwargs) thread.start() cplusplus = "" for chunk in streamer: cplusplus += chunk yield cplusplus demo = gr.Interface(fn=translate, inputs="code", outputs="markdown") demo.launch()