|
import time |
|
import streamlit as st |
|
import torch |
|
import string |
|
|
|
bert_tokenizer = None |
|
bert_model = None |
|
|
|
from transformers import BertTokenizer, BertForMaskedLM |
|
|
|
st.set_page_config(page_title='Qualitative pretrained model eveluation', page_icon=None, layout='centered', initial_sidebar_state='auto') |
|
|
|
@st.cache() |
|
def load_bert_model(model_name): |
|
try: |
|
bert_tokenizer = BertTokenizer.from_pretrained(model_name,do_lower_case |
|
=False) |
|
bert_model = BertForMaskedLM.from_pretrained(model_name).eval() |
|
return bert_tokenizer,bert_model |
|
except Exception as e: |
|
pass |
|
|
|
|
|
|
|
|
|
def decode(tokenizer, pred_idx, top_clean): |
|
ignore_tokens = string.punctuation |
|
tokens = [] |
|
for w in pred_idx: |
|
token = ''.join(tokenizer.decode(w).split()) |
|
if token not in ignore_tokens and len(token) > 1 and not token.startswith('.') and not token.startswith('['): |
|
|
|
tokens.append(token) |
|
return '\n'.join(tokens[:top_clean]) |
|
|
|
def encode(tokenizer, text_sentence, add_special_tokens=True): |
|
text_sentence = text_sentence.replace('<mask>', tokenizer.mask_token) |
|
|
|
if tokenizer.mask_token == text_sentence.split()[-1]: |
|
text_sentence += ' .' |
|
|
|
input_ids = torch.tensor([tokenizer.encode(text_sentence, add_special_tokens=add_special_tokens)]) |
|
if (tokenizer.mask_token in text_sentence.split()): |
|
mask_idx = torch.where(input_ids == tokenizer.mask_token_id)[1].tolist()[0] |
|
else: |
|
mask_idx = 0 |
|
return input_ids, mask_idx |
|
|
|
def get_all_predictions(text_sentence, top_clean=5): |
|
|
|
input_ids, mask_idx = encode(bert_tokenizer, text_sentence) |
|
with torch.no_grad(): |
|
predict = bert_model(input_ids)[0] |
|
bert = decode(bert_tokenizer, predict[0, mask_idx, :].topk(top_k*5).indices.tolist(), top_clean) |
|
cls = decode(bert_tokenizer, predict[0, 0, :].topk(top_k*5).indices.tolist(), top_clean) |
|
|
|
if ("[MASK]" in text_sentence or "<mask>" in text_sentence): |
|
return {'Input sentence':text_sentence,'Masked position': bert,'[CLS]':cls} |
|
else: |
|
return {'Input sentence':text_sentence,'[CLS]':cls} |
|
|
|
def get_bert_prediction(input_text,top_k): |
|
try: |
|
|
|
res = get_all_predictions(input_text, top_clean=int(top_k)) |
|
return res |
|
except Exception as error: |
|
pass |
|
|
|
|
|
def run_test(sent,top_k): |
|
start = None |
|
global bert_tokenizer |
|
global bert_model |
|
if (bert_tokenizer is None): |
|
bert_tokenizer, bert_model = load_bert_model(model_name) |
|
with st.spinner("Computing"): |
|
start = time.time() |
|
try: |
|
res = get_bert_prediction(sent,top_k) |
|
st.caption("Results in JSON") |
|
st.json(res) |
|
|
|
except Exception as e: |
|
st.error("Some error occurred during prediction" + str(e)) |
|
st.stop() |
|
if start is not None: |
|
st.text(f"prediction took {time.time() - start:.2f}s") |
|
|
|
|
|
st.markdown("<h3 style='text-align: center;'>Qualitative evaluation of Pretrained BERT models</h3>", unsafe_allow_html=True) |
|
st.markdown(""" |
|
<small style="font-size:18px; color: #8f8f8f">This app is used to qualitatively examine the performance of pretrained models to do NER , <a href="https://ajitrajasekharan.github.io/2021/01/02/my-first-post.html"><b>with no fine tuning</b></small></a> |
|
""", unsafe_allow_html=True) |
|
|
|
st.write("Model prediction for a masked position as well as the neighborhood of CLS vector for input text can be examined") |
|
st.write(" - To examine model prediction for a position, enter the token [MASK] or <mask>") |
|
st.write(" - To examine just the [CLS] vector, enter a word/phrase or sentence. Example: eGFR or EGFR or non small cell lung cancer") |
|
top_k = st.sidebar.slider("Select how many predictions do you need", 1 , 50, 20) |
|
print(top_k) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
try: |
|
|
|
model_name = st.sidebar.selectbox(label='Select Model to Apply', options=['ajitrajasekharan/biomedical', 'bert-base-cased','bert-large-cased','microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext','allenai/scibert_scivocab_cased'], index=0, key = "model_name") |
|
option = st.selectbox( |
|
'Choose any of these sentences or type any text below', |
|
('', "[MASK] who lives in New York and works for XCorp suffers from Parkinson's", "Lou Gehrig who lives in [MASK] and works for XCorp suffers from Parkinson's","'Lou Gehrig who lives in New York and works for [MASK] suffers from Parkinson's'","'Lou Gehrig who lives in New York and works for XCorp suffers from [MASK]'","[MASK] who lives in New York and works for XCorp suffers from Lou Gehrig's", "Parkinson who lives in [MASK] and works for XCorp suffers from Lou Gehrig's","Parkinson who lives in New York and works for [MASK] suffers from Lou Gehrig's","Parkinson who lives in New York and works for XCorp suffers from [MASK]","Lou Gehrig","Parkinson","Lou Gehrigh's is a [MASK]","Parkinson is a [MASK]","New York is a [MASK]","New York","XCorp","XCorp is a [MASK]","acute lymphoblastic leukemia","acute lymphoblastic leukemia is a [MASK]")) |
|
input_text = st.text_input("Enter text below", "") |
|
custom_model_name = st.text_input("Model not listed on left? Type the model name (fill-mask models only)", "") |
|
if (len(custom_model_name) > 0): |
|
model_name = custom_model_name |
|
st.write("Custom model selected:" + model_name) |
|
bert_tokenizer, bert_model = load_bert_model(model_name) |
|
if len(input_text) > 0: |
|
run_test(input_text,top_k) |
|
else: |
|
if len(option) > 0: |
|
run_test(option,top_k) |
|
if (bert_tokenizer is None): |
|
bert_tokenizer, bert_model = load_bert_model(model_name) |
|
|
|
|
|
except Exception as e: |
|
st.error("Some error occurred during loading" + str(e)) |
|
st.stop() |
|
|
|
st.write("---") |
|
|
|
|