ajitrajasekharan commited on
Commit
3f2b07b
1 Parent(s): 33d77c3

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +16 -9
app.py CHANGED
@@ -88,10 +88,19 @@ def run_test(sent,top_k,model_name):
88
  st.stop()
89
  if start is not None:
90
  st.text(f"prediction took {time.time() - start:.2f}s")
 
 
 
 
 
 
 
 
 
91
 
92
  def init_selectbox():
93
  option = st.selectbox(
94
- 'Choose any of these sentences or type any text below',
95
  ('', "[MASK] who lives in New York and works for XCorp suffers from Parkinson's", "Lou Gehrig who lives in [MASK] and works for XCorp suffers from Parkinson's","Lou Gehrig who lives in New York and works for [MASK] suffers from Parkinson's","Lou Gehrig who lives in New York and works for XCorp suffers from [MASK]","[MASK] who lives in New York and works for XCorp suffers from Lou Gehrig's", "Parkinson who lives in [MASK] and works for XCorp suffers from Lou Gehrig's","Parkinson who lives in New York and works for [MASK] suffers from Lou Gehrig's","Parkinson who lives in New York and works for XCorp suffers from [MASK]","Lou Gehrig","Parkinson","Lou Gehrigh's is a [MASK]","Parkinson is a [MASK]","New York is a [MASK]","New York","XCorp","XCorp is a [MASK]","acute lymphoblastic leukemia","acute lymphoblastic leukemia is a [MASK]"))
96
  return option
97
 
@@ -107,7 +116,6 @@ top_k = st.sidebar.slider("Select how many predictions do you need", 1 , 50, 20)
107
  print(top_k)
108
 
109
 
110
-
111
 
112
  #if st.button("Submit"):
113
 
@@ -116,18 +124,17 @@ try:
116
 
117
  model_name = st.sidebar.selectbox(label='Select Model to Apply', options=['ajitrajasekharan/biomedical', 'bert-base-cased','bert-large-cased','microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext','allenai/scibert_scivocab_cased','dmis-lab/biobert-v1.1'], index=0, key = "model_name")
118
  option = init_selectbox()
119
- input_text = st.text_input("Enter text below", "")
120
  custom_model_name = st.text_input("Model not listed on left? Type the model name (fill-mask BERT models only)", "")
121
  if (len(custom_model_name) > 0):
122
  model_name = custom_model_name
123
  st.info("Custom model selected: " + model_name)
124
  bert_tokenizer, bert_model = load_bert_model(model_name)
125
- if len(input_text) > 0:
126
- run_test(input_text,top_k,model_name)
127
- input_text = ""
128
- else:
129
- if len(option) > 0:
130
- run_test(option,top_k,model_name)
131
  if (bert_tokenizer is None):
132
  bert_tokenizer, bert_model = load_bert_model(model_name)
133
 
 
88
  st.stop()
89
  if start is not None:
90
  st.text(f"prediction took {time.time() - start:.2f}s")
91
+
92
+ def on_text_change():
93
+ global input_text,top_k,model_name
94
+ run_test(input_text,top_k,model_name)
95
+
96
+ def on_option_change():
97
+ global option,top_k,model_name
98
+ run_test(option,top_k,model_name)
99
+
100
 
101
  def init_selectbox():
102
  option = st.selectbox(
103
+ 'Choose any of these sentences or type any text below',on_change=on_option_change
104
  ('', "[MASK] who lives in New York and works for XCorp suffers from Parkinson's", "Lou Gehrig who lives in [MASK] and works for XCorp suffers from Parkinson's","Lou Gehrig who lives in New York and works for [MASK] suffers from Parkinson's","Lou Gehrig who lives in New York and works for XCorp suffers from [MASK]","[MASK] who lives in New York and works for XCorp suffers from Lou Gehrig's", "Parkinson who lives in [MASK] and works for XCorp suffers from Lou Gehrig's","Parkinson who lives in New York and works for [MASK] suffers from Lou Gehrig's","Parkinson who lives in New York and works for XCorp suffers from [MASK]","Lou Gehrig","Parkinson","Lou Gehrigh's is a [MASK]","Parkinson is a [MASK]","New York is a [MASK]","New York","XCorp","XCorp is a [MASK]","acute lymphoblastic leukemia","acute lymphoblastic leukemia is a [MASK]"))
105
  return option
106
 
 
116
  print(top_k)
117
 
118
 
 
119
 
120
  #if st.button("Submit"):
121
 
 
124
 
125
  model_name = st.sidebar.selectbox(label='Select Model to Apply', options=['ajitrajasekharan/biomedical', 'bert-base-cased','bert-large-cased','microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext','allenai/scibert_scivocab_cased','dmis-lab/biobert-v1.1'], index=0, key = "model_name")
126
  option = init_selectbox()
127
+ input_text = st.text_input("Enter text below", "",on_change=on_text_change)
128
  custom_model_name = st.text_input("Model not listed on left? Type the model name (fill-mask BERT models only)", "")
129
  if (len(custom_model_name) > 0):
130
  model_name = custom_model_name
131
  st.info("Custom model selected: " + model_name)
132
  bert_tokenizer, bert_model = load_bert_model(model_name)
133
+ #if len(input_text) > 0:
134
+ # run_test(input_text,top_k,model_name)
135
+ #else:
136
+ # if len(option) > 0:
137
+ # run_test(option,top_k,model_name)
 
138
  if (bert_tokenizer is None):
139
  bert_tokenizer, bert_model = load_bert_model(model_name)
140