ajitrajasekharan
commited on
Commit
•
b7137b1
1
Parent(s):
1370c40
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,108 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import time
|
2 |
+
import streamlit as st
|
3 |
+
import torch
|
4 |
+
import string
|
5 |
+
|
6 |
+
from transformers import BertTokenizer, BertForMaskedLM
|
7 |
+
|
8 |
+
@st.cache()
|
9 |
+
def load_bert_model(model_name):
|
10 |
+
try:
|
11 |
+
bert_tokenizer = BertTokenizer.from_pretrained(model_name)
|
12 |
+
bert_model = BertForMaskedLM.from_pretrained(model_name).eval()
|
13 |
+
return bert_tokenizer,bert_model
|
14 |
+
except Exception as e:
|
15 |
+
pass
|
16 |
+
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
def decode(tokenizer, pred_idx, top_clean):
|
21 |
+
ignore_tokens = string.punctuation + '[PAD]'
|
22 |
+
tokens = []
|
23 |
+
for w in pred_idx:
|
24 |
+
token = ''.join(tokenizer.decode(w).split())
|
25 |
+
if token not in ignore_tokens:
|
26 |
+
tokens.append(token.replace('##', ''))
|
27 |
+
return '\n'.join(tokens[:top_clean])
|
28 |
+
|
29 |
+
def encode(tokenizer, text_sentence, add_special_tokens=True):
|
30 |
+
text_sentence = text_sentence.replace('<mask>', tokenizer.mask_token)
|
31 |
+
# if <mask> is the last token, append a "." so that models dont predict punctuation.
|
32 |
+
if tokenizer.mask_token == text_sentence.split()[-1]:
|
33 |
+
text_sentence += ' .'
|
34 |
+
|
35 |
+
input_ids = torch.tensor([tokenizer.encode(text_sentence, add_special_tokens=add_special_tokens)])
|
36 |
+
mask_idx = torch.where(input_ids == tokenizer.mask_token_id)[1].tolist()[0]
|
37 |
+
return input_ids, mask_idx
|
38 |
+
|
39 |
+
def get_all_predictions(text_sentence, top_clean=5):
|
40 |
+
# ========================= BERT =================================
|
41 |
+
input_ids, mask_idx = encode(bert_tokenizer, text_sentence)
|
42 |
+
with torch.no_grad():
|
43 |
+
predict = bert_model(input_ids)[0]
|
44 |
+
bert = decode(bert_tokenizer, predict[0, mask_idx, :].topk(top_k).indices.tolist(), top_clean)
|
45 |
+
return {'bert': bert}
|
46 |
+
|
47 |
+
def get_bert_prediction(input_text,top_k):
|
48 |
+
try:
|
49 |
+
input_text += ' <mask>'
|
50 |
+
res = get_all_predictions(input_text, top_clean=int(top_k))
|
51 |
+
return res
|
52 |
+
except Exception as error:
|
53 |
+
pass
|
54 |
+
|
55 |
+
try:
|
56 |
+
|
57 |
+
st.title("Qualitative evaluation of Pretrained BERT models")
|
58 |
+
st.markdown("""
|
59 |
+
<a href="https://ajitrajasekharan.github.io/2021/01/02/my-first-post.html"><small style="font-size:18px; color: #8f8f8f">This app is used to qualitatively examine the performance of pretrained models to do NER , <b>with no fine tuning</b></small></a>
|
60 |
+
""", unsafe_allow_html=True)
|
61 |
+
st.write("Incomplete. Work in progress...")
|
62 |
+
#st.write("https://ajitrajasekharan.github.io/2021/01/02/my-first-post.html")
|
63 |
+
st.write("CLS vectors as well as the model prediction for a blank position are examined")
|
64 |
+
|
65 |
+
top_k = 10
|
66 |
+
print(top_k)
|
67 |
+
|
68 |
+
|
69 |
+
bert_tokenizer, bert_model = load_bert_model('ajitrajasekharan/biomedical')
|
70 |
+
default_text = "Imatinib is used to treat"
|
71 |
+
|
72 |
+
|
73 |
+
input_text = st.text_area(
|
74 |
+
label="Original text",
|
75 |
+
value=default_text,
|
76 |
+
)
|
77 |
+
|
78 |
+
start = None
|
79 |
+
if st.button("Submit"):
|
80 |
+
start = time.time()
|
81 |
+
with st.spinner("Computing"):
|
82 |
+
|
83 |
+
|
84 |
+
|
85 |
+
|
86 |
+
try:
|
87 |
+
res = get_bert_prediction(default_text,top_k)
|
88 |
+
|
89 |
+
|
90 |
+
st.header("JSON:")
|
91 |
+
|
92 |
+
st.json(res)
|
93 |
+
|
94 |
+
except Exception as e:
|
95 |
+
st.error("Some error occured!" + str(e))
|
96 |
+
st.stop()
|
97 |
+
|
98 |
+
st.write("---")
|
99 |
+
|
100 |
+
|
101 |
+
|
102 |
+
if start is not None:
|
103 |
+
st.text(f"prediction took {time.time() - start:.2f}s")
|
104 |
+
|
105 |
+
except Exception as e:
|
106 |
+
print("SOME PROBLEM OCCURED")
|
107 |
+
|
108 |
+
|