import time import streamlit as st import torch import string from transformers import BertTokenizer, BertForMaskedLM st.set_page_config(page_title='Qualitative pretrained model eveluation', page_icon=None, layout='centered', initial_sidebar_state='auto') @st.cache() def load_bert_model(model_name): try: bert_tokenizer = BertTokenizer.from_pretrained(model_name) bert_model = BertForMaskedLM.from_pretrained(model_name).eval() return bert_tokenizer,bert_model except Exception as e: pass def decode(tokenizer, pred_idx, top_clean): ignore_tokens = string.punctuation + '[PAD]' tokens = [] for w in pred_idx: token = ''.join(tokenizer.decode(w).split()) #if token not in ignore_tokens: # tokens.append(token.replace('##', '')) tokens.append(token) return '\n'.join(tokens[:top_clean]) def encode(tokenizer, text_sentence, add_special_tokens=True): text_sentence = text_sentence.replace('', tokenizer.mask_token) # if is the last token, append a "." so that models dont predict punctuation. if tokenizer.mask_token == text_sentence.split()[-1]: text_sentence += ' .' input_ids = torch.tensor([tokenizer.encode(text_sentence, add_special_tokens=add_special_tokens)]) mask_idx = torch.where(input_ids == tokenizer.mask_token_id)[1].tolist()[0] return input_ids, mask_idx def get_all_predictions(text_sentence, top_clean=5): # ========================= BERT ================================= input_ids, mask_idx = encode(bert_tokenizer, text_sentence) with torch.no_grad(): predict = bert_model(input_ids)[0] bert = decode(bert_tokenizer, predict[0, mask_idx, :].topk(top_k).indices.tolist(), top_clean) cls = decode(bert_tokenizer, predict[0, 0, :].topk(top_k).indices.tolist(), top_clean) return {'bert': bert,'[CLS]':cls} def get_bert_prediction(input_text,top_k): try: #input_text += ' ' res = get_all_predictions(input_text, top_clean=int(top_k)) return res except Exception as error: pass st.title("Qualitative evaluation of Pretrained BERT models") st.markdown(""" This app is used to qualitatively examine the performance of pretrained models to do NER , with no fine tuning """, unsafe_allow_html=True) st.write("Incomplete. Work in progress...") #st.write("https://ajitrajasekharan.github.io/2021/01/02/my-first-post.html") st.write("CLS vectors as well as the model prediction for a blank position are examined") top_k = 10 print(top_k) start = None #if st.button("Submit"): # with st.spinner("Computing"): try: model_name = st.sidebar.selectbox(label='Select Model to Apply', options=['ajitrajasekharan/biomedical', 'bert-base-cased','bert-large-cased','microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext','allenai/scibert_scivocab_cased'], index=0, key = "model_name") bert_tokenizer, bert_model = load_bert_model(model_name) default_text = "Imatinib is used to [MASK] nsclc" input_text = st.text_area( label="Original text", value=default_text, ) if st.button("Submit"): with st.spinner("Computing"): start = time.time() try: res = get_bert_prediction(input_text,top_k) st.header("JSON:") st.json(res) except Exception as e: st.error("Some error occurred during prediction" + str(e)) st.stop() if start is not None: st.text(f"prediction took {time.time() - start:.2f}s") except Exception as e: st.error("Some error occurred during loading" + str(e)) st.stop() st.write("---")