Spaces:
Running
Running
ajoy0071998
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,111 +1,111 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
import numpy as np
|
3 |
-
import torch
|
4 |
-
import cv2
|
5 |
-
from tensorflow.keras.models import load_model
|
6 |
-
from tensorflow.keras.preprocessing import image as keras_image
|
7 |
-
from PIL import Image
|
8 |
-
|
9 |
-
# Load the pre-trained MobileNetV2 model from the .h5 file
|
10 |
-
@st.cache_resource
|
11 |
-
def load_mobilenet_model():
|
12 |
-
return load_model('mobilenetv2_classifier.h5') # Replace with your .h5 file path
|
13 |
-
|
14 |
-
mobilenet_model = load_mobilenet_model()
|
15 |
-
|
16 |
-
# Load the YOLOv5 model (pre-trained)
|
17 |
-
@st.cache_resource
|
18 |
-
def load_yolov5_model():
|
19 |
-
return torch.hub.load('ultralytics/yolov5', 'yolov5s', pretrained=True)
|
20 |
-
|
21 |
-
yolov5_model = load_yolov5_model()
|
22 |
-
|
23 |
-
# Function to preprocess and predict image using MobileNetV2 with class messages
|
24 |
-
def predict_image(model, img, target_size=(224, 224)):
|
25 |
-
st.image(img, caption="Uploaded Image", use_column_width=True)
|
26 |
-
img = img.resize(target_size)
|
27 |
-
img_array = keras_image.img_to_array(img)
|
28 |
-
img_array = np.expand_dims(img_array, axis=0)
|
29 |
-
img_array /= 255.0 # Normalize to match the training preprocessing
|
30 |
-
predictions = model.predict(img_array)[0]
|
31 |
-
|
32 |
-
# Get indices sorted by prediction confidence (in descending order)
|
33 |
-
sorted_indices = np.argsort(predictions)[::-1]
|
34 |
-
primary_class_index = sorted_indices[0]
|
35 |
-
primary_confidence = predictions[primary_class_index]
|
36 |
-
|
37 |
-
# Check if the primary predicted label is 1 and has a confidence below 0.7
|
38 |
-
if primary_class_index != 1 and primary_confidence < 0.7:
|
39 |
-
secondary_class_index = sorted_indices[1]
|
40 |
-
secondary_confidence = predictions[secondary_class_index]
|
41 |
-
return secondary_class_index, secondary_confidence
|
42 |
-
|
43 |
-
return primary_class_index, primary_confidence
|
44 |
-
|
45 |
-
# Map class indices to specific messages
|
46 |
-
class_messages = {
|
47 |
-
0: "Face is not visible",
|
48 |
-
1: "Looking at the system",
|
49 |
-
2: "Looking down",
|
50 |
-
3: "Looking left or right",
|
51 |
-
4: "
|
52 |
-
}
|
53 |
-
|
54 |
-
# Function to count people using YOLOv5
|
55 |
-
def count_people(img):
|
56 |
-
img_array = np.array(img)
|
57 |
-
results = yolov5_model(img_array)
|
58 |
-
detections = results.pandas().xyxy[0]
|
59 |
-
person_detections = detections[detections['name'] == 'person']
|
60 |
-
num_people = len(person_detections)
|
61 |
-
return num_people, results
|
62 |
-
|
63 |
-
# Function to detect communication devices using YOLOv5
|
64 |
-
def detect_device(img):
|
65 |
-
img_array = np.array(img)
|
66 |
-
results = yolov5_model(img_array)
|
67 |
-
detections = results.pandas().xyxy[0]
|
68 |
-
device_detections = detections[detections['name'].str.contains('phone|tablet|computer', case=False, na=False)]
|
69 |
-
return device_detections, results
|
70 |
-
|
71 |
-
# Streamlit UI setup
|
72 |
-
st.title("Image Analysis App")
|
73 |
-
|
74 |
-
# Upload image
|
75 |
-
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
|
76 |
-
|
77 |
-
if uploaded_file is not None:
|
78 |
-
img = Image.open(uploaded_file)
|
79 |
-
|
80 |
-
# Display the uploaded image
|
81 |
-
st.image(img, caption="Uploaded Image", use_column_width=True)
|
82 |
-
|
83 |
-
# Run classification with MobileNetV2
|
84 |
-
st.subheader("Image Classification")
|
85 |
-
predicted_index, confidence = predict_image(mobilenet_model, img)
|
86 |
-
|
87 |
-
if predicted_index in class_messages:
|
88 |
-
st.write(f"Prediction: {class_messages[predicted_index]}")
|
89 |
-
st.write(f"Confidence score: {confidence:.2f}")
|
90 |
-
else:
|
91 |
-
st.write("Prediction not recognized.")
|
92 |
-
|
93 |
-
# Run person counting with YOLOv5
|
94 |
-
st.subheader("People Counting")
|
95 |
-
num_people, people_results = count_people(img)
|
96 |
-
st.write(f"Number of people detected: {num_people}")
|
97 |
-
people_results.show() # Show image with bounding boxes
|
98 |
-
|
99 |
-
# Run device detection with YOLOv5
|
100 |
-
st.subheader("Communication Device Detection")
|
101 |
-
device_detections, device_results = detect_device(img)
|
102 |
-
|
103 |
-
if not device_detections.empty:
|
104 |
-
st.write("Communication devices detected:")
|
105 |
-
st.write(device_detections[['name', 'confidence']])
|
106 |
-
device_results.show() # Show image with bounding boxes
|
107 |
-
else:
|
108 |
-
st.write("No communication devices detected in the image.")
|
109 |
-
else:
|
110 |
-
st.write("Please upload an image to analyze.")
|
111 |
-
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import numpy as np
|
3 |
+
import torch
|
4 |
+
import cv2
|
5 |
+
from tensorflow.keras.models import load_model
|
6 |
+
from tensorflow.keras.preprocessing import image as keras_image
|
7 |
+
from PIL import Image
|
8 |
+
|
9 |
+
# Load the pre-trained MobileNetV2 model from the .h5 file
|
10 |
+
@st.cache_resource
|
11 |
+
def load_mobilenet_model():
|
12 |
+
return load_model('mobilenetv2_classifier.h5') # Replace with your .h5 file path
|
13 |
+
|
14 |
+
mobilenet_model = load_mobilenet_model()
|
15 |
+
|
16 |
+
# Load the YOLOv5 model (pre-trained)
|
17 |
+
@st.cache_resource
|
18 |
+
def load_yolov5_model():
|
19 |
+
return torch.hub.load('ultralytics/yolov5', 'yolov5s', pretrained=True)
|
20 |
+
|
21 |
+
yolov5_model = load_yolov5_model()
|
22 |
+
|
23 |
+
# Function to preprocess and predict image using MobileNetV2 with class messages
|
24 |
+
def predict_image(model, img, target_size=(224, 224)):
|
25 |
+
st.image(img, caption="Uploaded Image", use_column_width=True)
|
26 |
+
img = img.resize(target_size)
|
27 |
+
img_array = keras_image.img_to_array(img)
|
28 |
+
img_array = np.expand_dims(img_array, axis=0)
|
29 |
+
img_array /= 255.0 # Normalize to match the training preprocessing
|
30 |
+
predictions = model.predict(img_array)[0]
|
31 |
+
|
32 |
+
# Get indices sorted by prediction confidence (in descending order)
|
33 |
+
sorted_indices = np.argsort(predictions)[::-1]
|
34 |
+
primary_class_index = sorted_indices[0]
|
35 |
+
primary_confidence = predictions[primary_class_index]
|
36 |
+
|
37 |
+
# Check if the primary predicted label is 1 and has a confidence below 0.7
|
38 |
+
if primary_class_index != 1 and primary_confidence < 0.7:
|
39 |
+
secondary_class_index = sorted_indices[1]
|
40 |
+
secondary_confidence = predictions[secondary_class_index]
|
41 |
+
return secondary_class_index, secondary_confidence
|
42 |
+
|
43 |
+
return primary_class_index, primary_confidence
|
44 |
+
|
45 |
+
# Map class indices to specific messages
|
46 |
+
class_messages = {
|
47 |
+
0: "Face is not visible",
|
48 |
+
1: "Looking at the system",
|
49 |
+
2: "Looking down",
|
50 |
+
3: "Looking left or right",
|
51 |
+
4: "Looking up"
|
52 |
+
}
|
53 |
+
|
54 |
+
# Function to count people using YOLOv5
|
55 |
+
def count_people(img):
|
56 |
+
img_array = np.array(img)
|
57 |
+
results = yolov5_model(img_array)
|
58 |
+
detections = results.pandas().xyxy[0]
|
59 |
+
person_detections = detections[detections['name'] == 'person']
|
60 |
+
num_people = len(person_detections)
|
61 |
+
return num_people, results
|
62 |
+
|
63 |
+
# Function to detect communication devices using YOLOv5
|
64 |
+
def detect_device(img):
|
65 |
+
img_array = np.array(img)
|
66 |
+
results = yolov5_model(img_array)
|
67 |
+
detections = results.pandas().xyxy[0]
|
68 |
+
device_detections = detections[detections['name'].str.contains('phone|tablet|computer', case=False, na=False)]
|
69 |
+
return device_detections, results
|
70 |
+
|
71 |
+
# Streamlit UI setup
|
72 |
+
st.title("Image Analysis App")
|
73 |
+
|
74 |
+
# Upload image
|
75 |
+
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
|
76 |
+
|
77 |
+
if uploaded_file is not None:
|
78 |
+
img = Image.open(uploaded_file)
|
79 |
+
|
80 |
+
# Display the uploaded image
|
81 |
+
st.image(img, caption="Uploaded Image", use_column_width=True)
|
82 |
+
|
83 |
+
# Run classification with MobileNetV2
|
84 |
+
st.subheader("Image Classification")
|
85 |
+
predicted_index, confidence = predict_image(mobilenet_model, img)
|
86 |
+
|
87 |
+
if predicted_index in class_messages:
|
88 |
+
st.write(f"Prediction: {class_messages[predicted_index]}")
|
89 |
+
st.write(f"Confidence score: {confidence:.2f}")
|
90 |
+
else:
|
91 |
+
st.write("Prediction not recognized.")
|
92 |
+
|
93 |
+
# Run person counting with YOLOv5
|
94 |
+
st.subheader("People Counting")
|
95 |
+
num_people, people_results = count_people(img)
|
96 |
+
st.write(f"Number of people detected: {num_people}")
|
97 |
+
people_results.show() # Show image with bounding boxes
|
98 |
+
|
99 |
+
# Run device detection with YOLOv5
|
100 |
+
st.subheader("Communication Device Detection")
|
101 |
+
device_detections, device_results = detect_device(img)
|
102 |
+
|
103 |
+
if not device_detections.empty:
|
104 |
+
st.write("Communication devices detected:")
|
105 |
+
st.write(device_detections[['name', 'confidence']])
|
106 |
+
device_results.show() # Show image with bounding boxes
|
107 |
+
else:
|
108 |
+
st.write("No communication devices detected in the image.")
|
109 |
+
else:
|
110 |
+
st.write("Please upload an image to analyze.")
|
111 |
+
|