import gradio as gr from urllib.parse import urlparse import requests import time import os import spaces import torch import subprocess import signal zero = torch.Tensor([0]).cuda() print(zero.device) # <-- 'cpu' 🤔 names = ['prompt', 'negative_prompt', 'subject', 'number_of_outputs', 'number_of_images_per_pose', 'randomise_poses', 'output_format', 'output_quality', 'seed'] def check_cog_server(): try: # Start the Cog server in the background cog_process = subprocess.Popen(["python3", "-m", "cog.server.http", "--threads=10"], cwd="/src") # Wait for the Cog server to start on port 5000 counter1 = 0 while True: try: requests.get("http://localhost:5000") print("Cog server is running on port 5000.") break except requests.exceptions.ConnectionError: print("Waiting for Cog server to start on port 5000...") time.sleep(5) counter1 += 1 if counter1 >= 250: raise Exception("Error: Cog server did not start on port 5000 after 250 attempts.") # Wait for the Cog server to be fully ready counter2 = 0 while True: response = requests.get("http://localhost:5000/health-check") status = response.json().get("status") if status == "READY": print("Cog server is fully ready.") break else: print("Waiting for Cog server (models loading) on port 5000...") time.sleep(5) counter2 += 1 if counter2 >= 250: raise Exception("Error: Cog server did not become fully ready after 250 attempts.") except Exception as e: print(f"Error: {str(e)}") cog_process.send_signal(signal.SIGINT) # Send interrupt signal to the Cog process raise e @spaces.GPU def predict(request: gr.Request, *args, progress=gr.Progress(track_tqdm=True)): print(zero.device) # <-- 'cuda:0' 🤗 headers = {'Content-Type': 'application/json'} payload = {"input": {}} base_url = "http://0.0.0.0:7860" for i, key in enumerate(names): value = args[i] if value and (os.path.exists(str(value))): value = f"{base_url}/file=" + value if value is not None and value != "": payload["input"][key] = value response = requests.post("http://0.0.0.0:5000/predictions", headers=headers, json=payload) if response.status_code == 201: follow_up_url = response.json()["urls"]["get"] response = requests.get(follow_up_url, headers=headers) while response.json()["status"] != "succeeded": if response.json()["status"] == "failed": raise gr.Error("The submission failed!") response = requests.get(follow_up_url, headers=headers) time.sleep(1) if response.status_code == 200: json_response = response.json() #If the output component is JSON return the entire output response if(outputs[0].get_config()["name"] == "json"): return json_response["output"] predict_outputs = parse_outputs(json_response["output"]) processed_outputs = process_outputs(predict_outputs) return tuple(processed_outputs) if len(processed_outputs) > 1 else processed_outputs[0] else: if(response.status_code == 409): raise gr.Error(f"Sorry, the Cog image is still processing. Try again in a bit.") raise gr.Error(f"The submission failed! Error: {response.status_code}") title = "Demo for consistent-character cog image by fofr" description = "Create images of a given character in different poses • running cog image by fofr" css=""" #col-container{ margin: 0 auto; max-width: 1400px; text-align: left; } """ with gr.Blocks(css=css) as app: with gr.Column(elem_id="col-container"): gr.HTML(f"""

Consistent Character Workflow

{description}

""") with gr.Row(): with gr.Column(scale=1): prompt = gr.Textbox( label="Prompt", info='''Describe the subject. Include clothes and hairstyle for more consistency.''' ) subject = gr.Image( label="Subject", type="filepath" ) submit_btn = gr.Button("Submit") with gr.Accordion(label="Advanced Settings", open=False): negative_prompt = gr.Textbox( label="Negative Prompt", info='''Things you do not want to see in your image''', value="text, watermark, lowres, low quality, worst quality, deformed, glitch, low contrast, noisy, saturation, blurry" ) with gr.Row(): number_of_outputs = gr.Slider( label="Number Of Outputs", info='''The number of images to generate.''', value=2, minimum=1, maximum=4, step=1, ) number_of_images_per_pose = gr.Slider( label="Number Of Images Per Pose", info='''The number of images to generate for each pose.''', value=1, minimum=1, maximum=4, step=1, ) with gr.Row(): randomise_poses = gr.Checkbox( label="Randomise Poses", info='''Randomise the poses used.''', value=True ) output_format = gr.Dropdown( choices=['webp', 'jpg', 'png'], label="output_format", info='''Format of the output images''', value="webp" ) with gr.Row(): output_quality = gr.Number( label="Output Quality", info='''Quality of the output images, from 0 to 100. 100 is best quality, 0 is lowest quality.''', value=80 ) seed = gr.Number( label="Seed", info='''Set a seed for reproducibility. Random by default.''', value=None ) with gr.Column(scale=1.5): consistent_results = gr.Gallery(label="Consistent Results") inputs = [prompt, negative_prompt, subject, number_of_outputs, number_of_images_per_pose, randomise_poses, output_format, output_quality, seed] outputs = [consistent_results] submit_btn.click( fn = predict, inputs = inputs, outputs = outputs, show_api = False ) # Check the Cog server's readiness before launching the Gradio app check_cog_server() app.queue(max_size=12, api_open=False).launch(share=False, show_api=False)