Spaces:
Runtime error
Runtime error
File size: 9,281 Bytes
2f4d5d4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 |
import streamlit as st
import pinecone
import openai
from openai.embeddings_utils import get_embedding
import json
OPENAI_KEY = st.secrets["OPENAI_KEY"]
PINECONE_KEY = st.secrets["PINECONE_KEY"]
INDEX = 'openai-ml-qa'
instructions = {
"conservative q&a": "Answer the question based on the context below, and if the question can't be answered based on the context, say \"I don't know\"\n\nContext:\n{0}\n\n---\n\nQuestion: {1}\nAnswer:",
"paragraph about a question":"Write a paragraph, addressing the question, and use the text below to obtain relevant information\"\n\nContext:\n{0}\n\n---\n\nQuestion: {1}\nParagraph long Answer:",
"bullet points": "Write a bullet point list of possible answers, addressing the question, and use the text below to obtain relevant information\"\n\nContext:\n{0}\n\n---\n\nQuestion: {1}\nBullet point Answer:",
"summarize problems given a topic": "Write a summary of the problems addressed by the questions below\"\n\n{0}\n\n---\n\n",
"extract key libraries and tools": "Write a list of libraries and tools present in the context below\"\n\nContext:\n{0}\n\n---\n\n",
"simple instructions": "{1} given the common questions and answers below \n\n{0}\n\n---\n\n",
"summarize": "Write an elaborate, paragraph long summary about \"{1}\" given the questions and answers from a public forum on this topic\n\n{0}\n\n---\n\nSummary:",
}
@st.experimental_singleton(show_spinner=False)
def init_openai():
# initialize connection to OpenAI
openai.api_key = OPENAI_KEY
@st.experimental_singleton(show_spinner=False)
def init_pinecone(index_name):
# initialize connection to Pinecone vector DB (app.pinecone.io for API key)
pinecone.init(
api_key=PINECONE_KEY,
environment='us-west1-gcp'
)
index = pinecone.Index(index_name)
stats = index.describe_index_stats()
dims = stats['dimension']
count = stats['namespaces']['']['vector_count']
return index, dims, count
def create_context(question, index, lib_meta, max_len=3750, top_k=5):
"""
Find most relevant context for a question via Pinecone search
"""
q_embed = get_embedding(question, engine=f'text-embedding-ada-002')
res = index.query(
q_embed, top_k=top_k,
include_metadata=True, filter={
'docs': {'$in': lib_meta}
})
cur_len = 0
contexts = []
sources = []
for row in res['matches']:
meta = row['metadata']
text = (
f"Topic: {meta['thread']}\n"+
f"Answer: {meta['context']}"
)
cur_len += len(text)
if cur_len < max_len:
contexts.append(text)
sources.append(row['metadata'])
else:
cur_len -= len(text) + 4
if max_len - cur_len < 200:
break
return "\n\n###\n\n".join(contexts), sources
def answer_question(
index,
fine_tuned_qa_model="text-davinci-003",
question="Am I allowed to publish model outputs to Twitter, without a human review?",
instruction="Answer the question based on the context below, and if the question can't be answered based on the context, say \"I don't know\"\n\nContext:\n{0}\n\n---\n\nQuestion: {1}\nAnswer:",
max_len=3550,
size="curie",
top_k=5,
debug=False,
max_tokens=400,
stop_sequence=None,
domains=["huggingface", "tensorflow", "streamlit", "pytorch"],
):
"""
Answer a question based on the most similar context from the dataframe texts
"""
context, sources = create_context(
question,
index,
lib_meta=domains,
max_len=max_len,
top_k=top_k
)
if debug:
print("Context:\n" + context)
print("\n\n")
try:
# fine-tuned models requires model parameter, whereas other models require engine parameter
model_param = (
{"model": fine_tuned_qa_model}
if ":" in fine_tuned_qa_model
and fine_tuned_qa_model.split(":")[1].startswith("ft")
else {"engine": fine_tuned_qa_model}
)
#print(instruction.format(context, question))
response = openai.Completion.create(
prompt=instruction.format(context, question),
temperature=0,
max_tokens=max_tokens,
top_p=1,
frequency_penalty=0,
presence_penalty=0,
stop=stop_sequence,
**model_param,
)
return response["choices"][0]["text"].strip(), sources
except Exception as e:
print(e)
return ""
def search(index, query, style, top_k, lib_filters):
if query != "":
with st.spinner("Retrieving, please wait..."):
answer, sources = answer_question(
index,
question=query,
instruction=instructions[style],
top_k=top_k
)
# lowercase relevant lib filters
lib_meta = [lib.lower() for lib in lib_filters.keys() if lib_filters[lib]]
lower_libs = [lib.lower() for lib in libraries]
# display the answer
st.write(answer)
with st.expander("Sources"):
for source in sources:
st.write(f"""
{source['docs']} > {source['category']} > [{source['thread']}]({source['href']})
""")
st.markdown("""
<link
rel="stylesheet"
href="https://fonts.googleapis.com/css?family=Roboto:300,400,500,700&display=swap"
/>
""", unsafe_allow_html=True)
#model_name = 'mpnet-discourse'
libraries = [
"Streamlit",
"HuggingFace",
"PyTorch",
"TensorFlow"
]
with st.spinner("Connecting to OpenAI..."):
retriever = init_openai()
with st.spinner("Connecting to Pinecone..."):
index, dims, count = init_pinecone(INDEX)
st.write("# ML Q&A")
search = st.container()
query = search.text_input('Ask a framework-specific question!', "")
with search.expander("Search Options"):
style = st.radio(label='Style', options=[
'Paragraph about a question', 'Conservative Q&A',
'Bullet points', 'Summarize problems given a topic',
'Extract key libraries and tools', 'Simple instructions',
'Summarize'
])
# add section for filters
st.write("""
#### Metadata Filters
**Libraries**
""")
# create two cols
cols = st.columns(2)
# add filtering based on library
lib_filters = {}
for lib in libraries:
i = len(lib_filters.keys()) % 2
with cols[i]:
lib_filters[lib] = st.checkbox(lib, value=True)
st.write("---")
top_k = st.slider(
"top_k",
min_value=1,
max_value=20,
value=5
)
st.sidebar.write(f"""
### Info
**Pinecone index name**: {INDEX}
**Pinecone index size**: {count}
**OpenAI embedding model**: *text-embedding-ada-002*
**Vector dimensionality**: {dims}
**OpenAI generation model**: *text-davinci-003*
---
### How it Works
The Q&A tool takes discussions and docs from some of the best Python ML
libraries and collates their content into a natural language search and Q&A tool.
Ask questions like **"How do I use the gradient tape in tensorflow?"** or **"What is the difference
between Tensorflow and PyTorch?"**, choose a answer style, and return relevant results!
The app is powered using OpenAI's embedding service with Pinecone's vector database. The whole process consists
of *three* steps:
**1**. Questions are fed into OpenAI's embeddings service to generate a {dims}-dimensional query vector.
**2**. We use Pinecone to identify similar context vectors (previously encoded from Q&A pages).
**3**. Relevant pages are passed in a new question to OpenAI's generative model, returning our answer.
**How do I make something like this?**
It's easy! Check out the [source code](https://github.com/pinecone-io/examples/tree/master/integrations/openai/beyond_search_webinar) and learn how to [integrate OpenAI and Pinecone in the docs](https://www.pinecone.io/docs/integrations/openai/)!
---
### Usage
If you'd like to restrict your search to a specific library (such as PyTorch or
Streamlit) you can with the *Advanced Options* dropdown. The source of information
can be switched between official docs and forum discussions too!
If you'd like OpenAI to consider more or less pages, try changing the `top_k` slider.
Want to see the original sources that GPT-3 is using to generate the answer? No problem, just click on the **Sources** box.
""")
#if style.lower() == 'conservative q&a':
# search.info("*Access search options above.*")
if search.button("Go!") or query != "":
with st.spinner("Retrieving, please wait..."):
# lowercase relevant lib filters
lib_meta = [lib.lower() for lib in lib_filters.keys() if lib_filters[lib]]
# ask the question
answer, sources = answer_question(
index,
question=query,
instruction=instructions[style.lower()],
top_k=top_k,
domains=lib_meta
)
# display the answer
st.write(answer)
with st.expander("Sources"):
for source in sources:
st.write(f"""
{source['docs']} > {source['category']} > [{source['thread']}]({source['href']})
""")
|