ak0601 commited on
Commit
8c3eaa3
·
1 Parent(s): 2f11005

Upload 3 files

Browse files
Files changed (3) hide show
  1. app.py +41 -0
  2. dogcat_model_bak.h5 +3 -0
  3. requirements.txt +5 -0
app.py ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import tensorflow as tf
3
+ from tensorflow.keras.preprocessing import image
4
+ import matplotlib.pyplot as plt
5
+ import numpy as np
6
+
7
+ # Load the model
8
+ model = tf.keras.models.load_model('dogcat_model_bak.h5')
9
+
10
+ def classify_image(input_image):
11
+ # Load and preprocess the image
12
+ img1 = image.load_img(input_image.name, target_size=(64, 64))
13
+ img2 = image.load_img(input_image.name)
14
+ img = image.img_to_array(img1)
15
+ img = img / 255.0
16
+ img = np.expand_dims(img, axis=0)
17
+
18
+ # Make prediction
19
+ prediction = model.predict(img)
20
+
21
+ # Display prediction result on the image
22
+ if prediction[0][0] > 0.5:
23
+ value = 'Dog: %1.2f' % prediction[0][0]
24
+ plt.text(20, 62, value, color='red', fontsize=18, bbox=dict(facecolor='white', alpha=0.8))
25
+ else:
26
+ value = 'Cat: %1.2f' % (1.0 - prediction[0][0])
27
+ plt.text(20, 62, value, color='red', fontsize=18, bbox=dict(facecolor='white', alpha=0.8))
28
+
29
+ plt.imshow(img2)
30
+ plt.axis('off') # Hide axis for better visualization
31
+ plt.show()
32
+
33
+ return img2 # Return the image with prediction annotations
34
+
35
+ # Interface creation using Gradio
36
+ inputs = gr.inputs.Image()
37
+ outputs = gr.outputs.Image()
38
+ interface = gr.Interface(classify_image, inputs, outputs, capture_session=True)
39
+
40
+ # Launch the Gradio app
41
+ interface.launch()
dogcat_model_bak.h5 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d2ca81c1f1706fec46cac5b436131eb3ec00795e03f5fb1b393b03b8d77581bd
3
+ size 9793928
requirements.txt ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ gradio
2
+ tensorflow
3
+ numpy
4
+ pandas
5
+ matplotlib