Spaces:
Sleeping
Sleeping
import streamlit as st | |
from dotenv import load_dotenv | |
from PyPDF2 import PdfReader | |
from langchain.text_splitter import CharacterTextSplitter | |
from langchain.embeddings import OpenAIEmbeddings, HuggingFaceInstructEmbeddings | |
from langchain.vectorstores import FAISS | |
from langchain.chat_models import ChatOpenAI | |
from langchain.memory import ConversationBufferMemory | |
from langchain.chains import ConversationalRetrievalChain | |
from app_style import css, bot_template, user_template | |
from langchain.llms import HuggingFaceHub | |
class RAG_PDF: | |
''' | |
Class for implementing RAGs for answering questions from PDFs | |
''' | |
def __init__(self, pdf_docs, model = "open-source"): | |
''' | |
Initializing the constructor | |
''' | |
self.pdf_docs = pdf_docs | |
if model=="open-source": | |
# Open Source model to generate embeddings for the text | |
self.embeddings = HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-xl") | |
# Open Source model to generate response (Current model used is T5-XXL) | |
self.llm = HuggingFaceHub(repo_id="google/flan-t5-xxl", model_kwargs={"temperature":0.5, "max_length":512}) | |
elif model=="openai": | |
# OpenAI model to generate embeddings for the text | |
self.embeddings = OpenAIEmbeddings() | |
# OpenAI model to generate response | |
self.llm = ChatOpenAI() | |
def pdf_extract_text(self): | |
''' | |
Extracting text from the PDFs | |
''' | |
text = "" | |
for pdf in self.pdf_docs: | |
pdf_reader = PdfReader(pdf) | |
for page in pdf_reader.pages: | |
text += page.extract_text() | |
return text | |
def pdf_chunkize(self, text): | |
''' | |
Chunking the text into smaller chunks | |
''' | |
text_splitter = CharacterTextSplitter( | |
separator="\n", | |
chunk_size=1000, | |
chunk_overlap=200, #context aware chunking | |
length_function=len | |
) | |
chunks = text_splitter.split_text(text) | |
return chunks | |
def pdf_vectorstore(self, text_chunks): | |
''' | |
Creating vector store for the text chunks | |
''' | |
vectorstore = FAISS.from_texts(texts=text_chunks, embedding=self.embeddings) | |
return vectorstore | |
def pdf_conversation_chain(self, vectorstore): | |
memory = ConversationBufferMemory( | |
memory_key='chat_history', return_messages=True) | |
conversation_chain = ConversationalRetrievalChain.from_llm( | |
llm=self.llm, | |
retriever=vectorstore.as_retriever(), | |
memory=memory | |
) | |
return conversation_chain | |
def activate_RAG_pipeline(self): | |
# get pdf text | |
raw_text = self.pdf_extract_text() | |
# get the text chunks | |
text_chunks = self.pdf_chunkize(raw_text) | |
# create vector store | |
vectorstore = self.pdf_vectorstore(text_chunks) | |
# create conversation chain | |
conversation_chain = self.pdf_conversation_chain(vectorstore) | |
return conversation_chain |