depth_compare / app.py
Akash Raj
test
284f074
raw
history blame
2.24 kB
from transformers import pipeline
from PIL import Image
import gradio as gr
import numpy as np
# Load the Hugging Face depth estimation pipelines
pipe_base = pipeline(task="depth-estimation", model="LiheYoung/depth-anything-base-hf")
pipe_small = pipeline(task="depth-estimation", model="LiheYoung/depth-anything-small-hf")
pipe_intel = pipeline(task="depth-estimation", model="Intel/dpt-swinv2-tiny-256")
pipe_beit = pipeline(task="depth-estimation", model="Intel/dpt-beit-base-384")
def estimate_depths(image):
# Perform depth estimation with each pipeline
depth_base = pipe_base(image)["depth"]
depth_small = pipe_small(image)["depth"]
depth_intel = pipe_intel(image)["depth"]
depth_beit = pipe_beit(image)["depth"]
# Normalize depths for visualization
depth_base = normalize_depth(depth_base)
depth_small = normalize_depth(depth_small)
depth_intel = normalize_depth(depth_intel)
depth_beit = normalize_depth(depth_beit)
return depth_base, depth_small, depth_intel, depth_beit
def normalize_depth(depth_map):
# Normalize depth map values to range [0, 255] for visualization
normalized_depth = ((depth_map - depth_map.min()) / (depth_map.max() - depth_map.min())) * 255
return normalized_depth.astype(np.uint8)
# Create a Gradio interface
iface = gr.Interface(
fn=estimate_depths,
inputs=gr.Image(type="pil"),
outputs=[
gr.Image(type="numpy", label="LiheYoung/depth-anything-base-hf"),
gr.Image(type="numpy", label="LiheYoung/depth-anything-small-hf"),
gr.Image(type="numpy", label="Intel/dpt-swinv2-tiny-256"),
gr.Image(type="numpy", label="Intel/dpt-beit-base-384")
],
title="Multi-Model Depth Estimation",
description="Upload an image to get depth estimation maps from multiple models.",
layout="vertical"
)
# Launch the Gradio app
iface.launch()
"""
from transformers import pipeline
from PIL import Image
import requests
# load pipe
pipe = pipeline(task="depth-estimation", model="LiheYoung/depth-anything-small-hf")
# load image
url = 'http://images.cocodataset.org/val2017/000000039769.jpg'
image = Image.open(requests.get(url, stream=True).raw)
# inference
depth = pipe(image)["depth"]
"""