Spaces:
Runtime error
Runtime error
# Copyright (c) Facebook, Inc. and its affiliates. | |
import torch | |
from densepose.structures.data_relative import DensePoseDataRelative | |
class DensePoseList: | |
_TORCH_DEVICE_CPU = torch.device("cpu") | |
def __init__(self, densepose_datas, boxes_xyxy_abs, image_size_hw, device=_TORCH_DEVICE_CPU): | |
assert len(densepose_datas) == len( | |
boxes_xyxy_abs | |
), "Attempt to initialize DensePoseList with {} DensePose datas " "and {} boxes".format( | |
len(densepose_datas), len(boxes_xyxy_abs) | |
) | |
self.densepose_datas = [] | |
for densepose_data in densepose_datas: | |
assert isinstance(densepose_data, DensePoseDataRelative) or densepose_data is None, ( | |
"Attempt to initialize DensePoseList with DensePose datas " | |
"of type {}, expected DensePoseDataRelative".format(type(densepose_data)) | |
) | |
densepose_data_ondevice = ( | |
densepose_data.to(device) if densepose_data is not None else None | |
) | |
self.densepose_datas.append(densepose_data_ondevice) | |
self.boxes_xyxy_abs = boxes_xyxy_abs.to(device) | |
self.image_size_hw = image_size_hw | |
self.device = device | |
def to(self, device): | |
if self.device == device: | |
return self | |
return DensePoseList(self.densepose_datas, self.boxes_xyxy_abs, self.image_size_hw, device) | |
def __iter__(self): | |
return iter(self.densepose_datas) | |
def __len__(self): | |
return len(self.densepose_datas) | |
def __repr__(self): | |
s = self.__class__.__name__ + "(" | |
s += "num_instances={}, ".format(len(self.densepose_datas)) | |
s += "image_width={}, ".format(self.image_size_hw[1]) | |
s += "image_height={})".format(self.image_size_hw[0]) | |
return s | |
def __getitem__(self, item): | |
if isinstance(item, int): | |
densepose_data_rel = self.densepose_datas[item] | |
return densepose_data_rel | |
elif isinstance(item, slice): | |
densepose_datas_rel = self.densepose_datas[item] | |
boxes_xyxy_abs = self.boxes_xyxy_abs[item] | |
return DensePoseList( | |
densepose_datas_rel, boxes_xyxy_abs, self.image_size_hw, self.device | |
) | |
elif isinstance(item, torch.Tensor) and (item.dtype == torch.bool): | |
densepose_datas_rel = [self.densepose_datas[i] for i, x in enumerate(item) if x > 0] | |
boxes_xyxy_abs = self.boxes_xyxy_abs[item] | |
return DensePoseList( | |
densepose_datas_rel, boxes_xyxy_abs, self.image_size_hw, self.device | |
) | |
else: | |
densepose_datas_rel = [self.densepose_datas[i] for i in item] | |
boxes_xyxy_abs = self.boxes_xyxy_abs[item] | |
return DensePoseList( | |
densepose_datas_rel, boxes_xyxy_abs, self.image_size_hw, self.device | |
) | |