Spaces:
Runtime error
Runtime error
IDM-VTON-dedao-demo01
/
preprocess
/humanparsing
/mhp_extension
/detectron2
/tests
/test_visualizer.py
# -*- coding: utf-8 -*- | |
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved | |
# File: | |
import numpy as np | |
import unittest | |
import torch | |
from detectron2.data import MetadataCatalog | |
from detectron2.structures import BoxMode, Instances, RotatedBoxes | |
from detectron2.utils.visualizer import Visualizer | |
class TestVisualizer(unittest.TestCase): | |
def _random_data(self): | |
H, W = 100, 100 | |
N = 10 | |
img = np.random.rand(H, W, 3) * 255 | |
boxxy = np.random.rand(N, 2) * (H // 2) | |
boxes = np.concatenate((boxxy, boxxy + H // 2), axis=1) | |
def _rand_poly(): | |
return np.random.rand(3, 2).flatten() * H | |
polygons = [[_rand_poly() for _ in range(np.random.randint(1, 5))] for _ in range(N)] | |
mask = np.zeros_like(img[:, :, 0], dtype=np.bool) | |
mask[:10, 10:20] = 1 | |
labels = [str(i) for i in range(N)] | |
return img, boxes, labels, polygons, [mask] * N | |
def metadata(self): | |
return MetadataCatalog.get("coco_2017_train") | |
def test_draw_dataset_dict(self): | |
img = np.random.rand(512, 512, 3) * 255 | |
dic = { | |
"annotations": [ | |
{ | |
"bbox": [ | |
368.9946492271106, | |
330.891438763377, | |
13.148537455410235, | |
13.644708680142685, | |
], | |
"bbox_mode": BoxMode.XYWH_ABS, | |
"category_id": 0, | |
"iscrowd": 1, | |
"segmentation": { | |
"counts": "_jh52m?2N2N2N2O100O10O001N1O2MceP2", | |
"size": [512, 512], | |
}, | |
} | |
], | |
"height": 512, | |
"image_id": 1, | |
"width": 512, | |
} | |
v = Visualizer(img, self.metadata) | |
v.draw_dataset_dict(dic) | |
def test_overlay_instances(self): | |
img, boxes, labels, polygons, masks = self._random_data() | |
v = Visualizer(img, self.metadata) | |
output = v.overlay_instances(masks=polygons, boxes=boxes, labels=labels).get_image() | |
self.assertEqual(output.shape, img.shape) | |
# Test 2x scaling | |
v = Visualizer(img, self.metadata, scale=2.0) | |
output = v.overlay_instances(masks=polygons, boxes=boxes, labels=labels).get_image() | |
self.assertEqual(output.shape[0], img.shape[0] * 2) | |
# Test overlay masks | |
v = Visualizer(img, self.metadata) | |
output = v.overlay_instances(masks=masks, boxes=boxes, labels=labels).get_image() | |
self.assertEqual(output.shape, img.shape) | |
def test_overlay_instances_no_boxes(self): | |
img, boxes, labels, polygons, _ = self._random_data() | |
v = Visualizer(img, self.metadata) | |
v.overlay_instances(masks=polygons, boxes=None, labels=labels).get_image() | |
def test_draw_instance_predictions(self): | |
img, boxes, _, _, masks = self._random_data() | |
num_inst = len(boxes) | |
inst = Instances((img.shape[0], img.shape[1])) | |
inst.pred_classes = torch.randint(0, 80, size=(num_inst,)) | |
inst.scores = torch.rand(num_inst) | |
inst.pred_boxes = torch.from_numpy(boxes) | |
inst.pred_masks = torch.from_numpy(np.asarray(masks)) | |
v = Visualizer(img, self.metadata) | |
v.draw_instance_predictions(inst) | |
def test_draw_empty_mask_predictions(self): | |
img, boxes, _, _, masks = self._random_data() | |
num_inst = len(boxes) | |
inst = Instances((img.shape[0], img.shape[1])) | |
inst.pred_classes = torch.randint(0, 80, size=(num_inst,)) | |
inst.scores = torch.rand(num_inst) | |
inst.pred_boxes = torch.from_numpy(boxes) | |
inst.pred_masks = torch.from_numpy(np.zeros_like(np.asarray(masks))) | |
v = Visualizer(img, self.metadata) | |
v.draw_instance_predictions(inst) | |
def test_correct_output_shape(self): | |
img = np.random.rand(928, 928, 3) * 255 | |
v = Visualizer(img, self.metadata) | |
out = v.output.get_image() | |
self.assertEqual(out.shape, img.shape) | |
def test_overlay_rotated_instances(self): | |
H, W = 100, 150 | |
img = np.random.rand(H, W, 3) * 255 | |
num_boxes = 50 | |
boxes_5d = torch.zeros(num_boxes, 5) | |
boxes_5d[:, 0] = torch.FloatTensor(num_boxes).uniform_(-0.1 * W, 1.1 * W) | |
boxes_5d[:, 1] = torch.FloatTensor(num_boxes).uniform_(-0.1 * H, 1.1 * H) | |
boxes_5d[:, 2] = torch.FloatTensor(num_boxes).uniform_(0, max(W, H)) | |
boxes_5d[:, 3] = torch.FloatTensor(num_boxes).uniform_(0, max(W, H)) | |
boxes_5d[:, 4] = torch.FloatTensor(num_boxes).uniform_(-1800, 1800) | |
rotated_boxes = RotatedBoxes(boxes_5d) | |
labels = [str(i) for i in range(num_boxes)] | |
v = Visualizer(img, self.metadata) | |
output = v.overlay_instances(boxes=rotated_boxes, labels=labels).get_image() | |
self.assertEqual(output.shape, img.shape) | |
def test_draw_no_metadata(self): | |
img, boxes, _, _, masks = self._random_data() | |
num_inst = len(boxes) | |
inst = Instances((img.shape[0], img.shape[1])) | |
inst.pred_classes = torch.randint(0, 80, size=(num_inst,)) | |
inst.scores = torch.rand(num_inst) | |
inst.pred_boxes = torch.from_numpy(boxes) | |
inst.pred_masks = torch.from_numpy(np.asarray(masks)) | |
v = Visualizer(img, MetadataCatalog.get("asdfasdf")) | |
v.draw_instance_predictions(inst) | |