IDM-VTON
update IDM-VTON Demo
938e515
#!/usr/bin/env python
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
"""
A script to benchmark builtin models.
Note: this script has an extra dependency of psutil.
"""
import itertools
import logging
import psutil
import torch
import tqdm
from fvcore.common.timer import Timer
from torch.nn.parallel import DistributedDataParallel
from detectron2.checkpoint import DetectionCheckpointer
from detectron2.config import get_cfg
from detectron2.data import (
DatasetFromList,
build_detection_test_loader,
build_detection_train_loader,
)
from detectron2.engine import SimpleTrainer, default_argument_parser, hooks, launch
from detectron2.modeling import build_model
from detectron2.solver import build_optimizer
from detectron2.utils import comm
from detectron2.utils.events import CommonMetricPrinter
from detectron2.utils.logger import setup_logger
logger = logging.getLogger("detectron2")
def setup(args):
cfg = get_cfg()
cfg.merge_from_file(args.config_file)
cfg.SOLVER.BASE_LR = 0.001 # Avoid NaNs. Not useful in this script anyway.
cfg.merge_from_list(args.opts)
cfg.freeze()
setup_logger(distributed_rank=comm.get_rank())
return cfg
def benchmark_data(args):
cfg = setup(args)
timer = Timer()
dataloader = build_detection_train_loader(cfg)
logger.info("Initialize loader using {} seconds.".format(timer.seconds()))
timer.reset()
itr = iter(dataloader)
for i in range(10): # warmup
next(itr)
if i == 0:
startup_time = timer.seconds()
timer = Timer()
max_iter = 1000
for _ in tqdm.trange(max_iter):
next(itr)
logger.info(
"{} iters ({} images) in {} seconds.".format(
max_iter, max_iter * cfg.SOLVER.IMS_PER_BATCH, timer.seconds()
)
)
logger.info("Startup time: {} seconds".format(startup_time))
vram = psutil.virtual_memory()
logger.info(
"RAM Usage: {:.2f}/{:.2f} GB".format(
(vram.total - vram.available) / 1024 ** 3, vram.total / 1024 ** 3
)
)
# test for a few more rounds
for _ in range(10):
timer = Timer()
max_iter = 1000
for _ in tqdm.trange(max_iter):
next(itr)
logger.info(
"{} iters ({} images) in {} seconds.".format(
max_iter, max_iter * cfg.SOLVER.IMS_PER_BATCH, timer.seconds()
)
)
def benchmark_train(args):
cfg = setup(args)
model = build_model(cfg)
logger.info("Model:\n{}".format(model))
if comm.get_world_size() > 1:
model = DistributedDataParallel(
model, device_ids=[comm.get_local_rank()], broadcast_buffers=False
)
optimizer = build_optimizer(cfg, model)
checkpointer = DetectionCheckpointer(model, optimizer=optimizer)
checkpointer.load(cfg.MODEL.WEIGHTS)
cfg.defrost()
cfg.DATALOADER.NUM_WORKERS = 0
data_loader = build_detection_train_loader(cfg)
dummy_data = list(itertools.islice(data_loader, 100))
def f():
data = DatasetFromList(dummy_data, copy=False)
while True:
yield from data
max_iter = 400
trainer = SimpleTrainer(model, f(), optimizer)
trainer.register_hooks(
[hooks.IterationTimer(), hooks.PeriodicWriter([CommonMetricPrinter(max_iter)])]
)
trainer.train(1, max_iter)
@torch.no_grad()
def benchmark_eval(args):
cfg = setup(args)
model = build_model(cfg)
model.eval()
logger.info("Model:\n{}".format(model))
DetectionCheckpointer(model).load(cfg.MODEL.WEIGHTS)
cfg.defrost()
cfg.DATALOADER.NUM_WORKERS = 0
data_loader = build_detection_test_loader(cfg, cfg.DATASETS.TEST[0])
dummy_data = list(itertools.islice(data_loader, 100))
def f():
while True:
yield from DatasetFromList(dummy_data, copy=False)
for _ in range(5): # warmup
model(dummy_data[0])
max_iter = 400
timer = Timer()
with tqdm.tqdm(total=max_iter) as pbar:
for idx, d in enumerate(f()):
if idx == max_iter:
break
model(d)
pbar.update()
logger.info("{} iters in {} seconds.".format(max_iter, timer.seconds()))
if __name__ == "__main__":
parser = default_argument_parser()
parser.add_argument("--task", choices=["train", "eval", "data"], required=True)
args = parser.parse_args()
assert not args.eval_only
if args.task == "data":
f = benchmark_data
elif args.task == "train":
"""
Note: training speed may not be representative.
The training cost of a R-CNN model varies with the content of the data
and the quality of the model.
"""
f = benchmark_train
elif args.task == "eval":
f = benchmark_eval
# only benchmark single-GPU inference.
assert args.num_gpus == 1 and args.num_machines == 1
launch(f, args.num_gpus, args.num_machines, args.machine_rank, args.dist_url, args=(args,))