Spaces:
Runtime error
Runtime error
import argparse | |
import cv2 | |
import os | |
import json | |
import numpy as np | |
from PIL import Image as PILImage | |
import joblib | |
def mask_nms(masks, bbox_scores, instances_confidence_threshold=0.5, overlap_threshold=0.7): | |
""" | |
NMS-like procedure used in Panoptic Segmentation | |
Remove the overlap areas of different instances in Instance Segmentation | |
""" | |
panoptic_seg = np.zeros(masks.shape[:2], dtype=np.uint8) | |
sorted_inds = list(range(len(bbox_scores))) | |
current_segment_id = 0 | |
segments_score = [] | |
for inst_id in sorted_inds: | |
score = bbox_scores[inst_id] | |
if score < instances_confidence_threshold: | |
break | |
mask = masks[:, :, inst_id] | |
mask_area = mask.sum() | |
if mask_area == 0: | |
continue | |
intersect = (mask > 0) & (panoptic_seg > 0) | |
intersect_area = intersect.sum() | |
if intersect_area * 1.0 / mask_area > overlap_threshold: | |
continue | |
if intersect_area > 0: | |
mask = mask & (panoptic_seg == 0) | |
current_segment_id += 1 | |
# panoptic_seg[np.where(mask==1)] = current_segment_id | |
# panoptic_seg = panoptic_seg + current_segment_id*mask | |
panoptic_seg = np.where(mask == 0, panoptic_seg, current_segment_id) | |
segments_score.append(score) | |
# print(np.unique(panoptic_seg)) | |
return panoptic_seg, segments_score | |
def extend(si, sj, instance_label, global_label, panoptic_seg_mask, class_map): | |
""" | |
""" | |
directions = [[-1, 0], [0, 1], [1, 0], [0, -1], | |
[1, 1], [1, -1], [-1, 1], [-1, -1]] | |
inst_class = instance_label[si, sj] | |
human_class = panoptic_seg_mask[si, sj] | |
global_class = class_map[inst_class] | |
queue = [[si, sj]] | |
while len(queue) != 0: | |
cur = queue[0] | |
queue.pop(0) | |
for direction in directions: | |
ni = cur[0] + direction[0] | |
nj = cur[1] + direction[1] | |
if ni >= 0 and nj >= 0 and \ | |
ni < instance_label.shape[0] and \ | |
nj < instance_label.shape[1] and \ | |
instance_label[ni, nj] == 0 and \ | |
global_label[ni, nj] == global_class: | |
instance_label[ni, nj] = inst_class | |
# Using refined instance label to refine human label | |
panoptic_seg_mask[ni, nj] = human_class | |
queue.append([ni, nj]) | |
def refine(instance_label, panoptic_seg_mask, global_label, class_map): | |
""" | |
Inputs: | |
[ instance_label ] | |
np.array() with shape [h, w] | |
[ global_label ] with shape [h, w] | |
np.array() | |
""" | |
for i in range(instance_label.shape[0]): | |
for j in range(instance_label.shape[1]): | |
if instance_label[i, j] != 0: | |
extend(i, j, instance_label, global_label, panoptic_seg_mask, class_map) | |
def get_palette(num_cls): | |
""" Returns the color map for visualizing the segmentation mask. | |
Inputs: | |
=num_cls= | |
Number of classes. | |
Returns: | |
The color map. | |
""" | |
n = num_cls | |
palette = [0] * (n * 3) | |
for j in range(0, n): | |
lab = j | |
palette[j * 3 + 0] = 0 | |
palette[j * 3 + 1] = 0 | |
palette[j * 3 + 2] = 0 | |
i = 0 | |
while lab: | |
palette[j * 3 + 0] |= (((lab >> 0) & 1) << (7 - i)) | |
palette[j * 3 + 1] |= (((lab >> 1) & 1) << (7 - i)) | |
palette[j * 3 + 2] |= (((lab >> 2) & 1) << (7 - i)) | |
i += 1 | |
lab >>= 3 | |
return palette | |
def patch2img_output(patch_dir, img_name, img_height, img_width, bbox, bbox_type, num_class): | |
"""transform bbox patch outputs to image output""" | |
assert bbox_type == 'gt' or 'msrcnn' | |
output = np.zeros((img_height, img_width, num_class), dtype='float') | |
output[:, :, 0] = np.inf | |
count_predictions = np.zeros((img_height, img_width, num_class), dtype='int32') | |
for i in range(len(bbox)): # person index starts from 1 | |
file_path = os.path.join(patch_dir, os.path.splitext(img_name)[0] + '_' + str(i + 1) + '_' + bbox_type + '.npy') | |
bbox_output = np.load(file_path) | |
output[bbox[i][1]:bbox[i][3] + 1, bbox[i][0]:bbox[i][2] + 1, 1:] += bbox_output[:, :, 1:] | |
count_predictions[bbox[i][1]:bbox[i][3] + 1, bbox[i][0]:bbox[i][2] + 1, 1:] += 1 | |
output[bbox[i][1]:bbox[i][3] + 1, bbox[i][0]:bbox[i][2] + 1, 0] \ | |
= np.minimum(output[bbox[i][1]:bbox[i][3] + 1, bbox[i][0]:bbox[i][2] + 1, 0], bbox_output[:, :, 0]) | |
# Caution zero dividing. | |
count_predictions[count_predictions == 0] = 1 | |
return output / count_predictions | |
def get_instance(cat_gt, panoptic_seg_mask): | |
""" | |
""" | |
instance_gt = np.zeros_like(cat_gt, dtype=np.uint8) | |
num_humans = len(np.unique(panoptic_seg_mask)) - 1 | |
class_map = {} | |
total_part_num = 0 | |
for id in range(1, num_humans + 1): | |
human_part_label = np.where(panoptic_seg_mask == id, cat_gt, 0).astype(np.uint8) | |
# human_part_label = (np.where(panoptic_seg_mask==id) * cat_gt).astype(np.uint8) | |
part_classes = np.unique(human_part_label) | |
exceed = False | |
for part_id in part_classes: | |
if part_id == 0: # background | |
continue | |
total_part_num += 1 | |
if total_part_num > 255: | |
print("total_part_num exceed, return current instance map: {}".format(total_part_num)) | |
exceed = True | |
break | |
class_map[total_part_num] = part_id | |
instance_gt[np.where(human_part_label == part_id)] = total_part_num | |
if exceed: | |
break | |
# Make instance id continous. | |
ori_cur_labels = np.unique(instance_gt) | |
total_num_label = len(ori_cur_labels) | |
if instance_gt.max() + 1 != total_num_label: | |
for label in range(1, total_num_label): | |
instance_gt[instance_gt == ori_cur_labels[label]] = label | |
final_class_map = {} | |
for label in range(1, total_num_label): | |
if label >= 1: | |
final_class_map[label] = class_map[ori_cur_labels[label]] | |
return instance_gt, final_class_map | |
def compute_confidence(im_name, feature_map, class_map, | |
instance_label, output_dir, | |
panoptic_seg_mask, seg_score_list): | |
""" | |
""" | |
conf_file = open(os.path.join(output_dir, os.path.splitext(im_name)[0] + '.txt'), 'w') | |
weighted_map = np.zeros_like(feature_map[:, :, 0]) | |
for index, score in enumerate(seg_score_list): | |
weighted_map += (panoptic_seg_mask == index + 1) * score | |
for label in class_map.keys(): | |
cls = class_map[label] | |
confidence = feature_map[:, :, cls].reshape(-1)[np.where(instance_label.reshape(-1) == label)] | |
confidence = (weighted_map * feature_map[:, :, cls].copy()).reshape(-1)[ | |
np.where(instance_label.reshape(-1) == label)] | |
confidence = confidence.sum() / len(confidence) | |
conf_file.write('{} {}\n'.format(cls, confidence)) | |
conf_file.close() | |
def result_saving(fused_output, img_name, img_height, img_width, output_dir, mask_output_path, bbox_score, msrcnn_bbox): | |
if not os.path.exists(output_dir): | |
os.makedirs(output_dir) | |
global_root = os.path.join(output_dir, 'global_parsing') | |
instance_root = os.path.join(output_dir, 'instance_parsing') | |
tag_dir = os.path.join(output_dir, 'global_tag') | |
if not os.path.exists(global_root): | |
os.makedirs(global_root) | |
if not os.path.exists(instance_root): | |
os.makedirs(instance_root) | |
if not os.path.exists(tag_dir): | |
os.makedirs(tag_dir) | |
# For visualizing indexed png image. | |
palette = get_palette(256) | |
fused_output = cv2.resize(fused_output, dsize=(img_width, img_height), interpolation=cv2.INTER_LINEAR) | |
seg_pred = np.asarray(np.argmax(fused_output, axis=2), dtype=np.uint8) | |
masks = np.load(mask_output_path) | |
masks[np.where(seg_pred == 0)] = 0 | |
panoptic_seg_mask = masks | |
seg_score_list = bbox_score | |
instance_pred, class_map = get_instance(seg_pred, panoptic_seg_mask) | |
refine(instance_pred, panoptic_seg_mask, seg_pred, class_map) | |
compute_confidence(img_name, fused_output, class_map, instance_pred, instance_root, | |
panoptic_seg_mask, seg_score_list) | |
ins_seg_results = open(os.path.join(tag_dir, os.path.splitext(img_name)[0] + '.txt'), "a") | |
keep_human_id_list = list(np.unique(panoptic_seg_mask)) | |
if 0 in keep_human_id_list: | |
keep_human_id_list.remove(0) | |
for i in keep_human_id_list: | |
ins_seg_results.write('{:.6f} {} {} {} {}\n'.format(seg_score_list[i - 1], | |
int(msrcnn_bbox[i - 1][1]), int(msrcnn_bbox[i - 1][0]), | |
int(msrcnn_bbox[i - 1][3]), int(msrcnn_bbox[i - 1][2]))) | |
ins_seg_results.close() | |
output_im_global = PILImage.fromarray(seg_pred) | |
output_im_instance = PILImage.fromarray(instance_pred) | |
output_im_tag = PILImage.fromarray(panoptic_seg_mask) | |
output_im_global.putpalette(palette) | |
output_im_instance.putpalette(palette) | |
output_im_tag.putpalette(palette) | |
output_im_global.save(os.path.join(global_root, os.path.splitext(img_name)[0] + '.png')) | |
output_im_instance.save(os.path.join(instance_root, os.path.splitext(img_name)[0] + '.png')) | |
output_im_tag.save(os.path.join(tag_dir, os.path.splitext(img_name)[0] + '.png')) | |
def multi_process(a, args): | |
img_name = a['im_name'] | |
img_height = a['img_height'] | |
img_width = a['img_width'] | |
msrcnn_bbox = a['person_bbox'] | |
bbox_score = a['person_bbox_score'] | |
######### loading outputs from gloabl and local models ######### | |
global_output = np.load(os.path.join(args.global_output_dir, os.path.splitext(img_name)[0] + '.npy')) | |
msrcnn_output = patch2img_output(args.msrcnn_output_dir, img_name, img_height, img_width, msrcnn_bbox, | |
bbox_type='msrcnn', num_class=20) | |
gt_output = patch2img_output(args.gt_output_dir, img_name, img_height, img_width, msrcnn_bbox, bbox_type='msrcnn', | |
num_class=20) | |
#### global and local branch logits fusion ##### | |
# fused_output = global_output + msrcnn_output + gt_output | |
fused_output = global_output + gt_output | |
mask_output_path = os.path.join(args.mask_output_dir, os.path.splitext(img_name)[0] + '_mask.npy') | |
result_saving(fused_output, img_name, img_height, img_width, args.save_dir, mask_output_path, bbox_score, msrcnn_bbox) | |
return | |
def main(args): | |
json_file = open(args.test_json_path) | |
anno = json.load(json_file)['root'] | |
results = joblib.Parallel(n_jobs=24, verbose=10, pre_dispatch="all")( | |
[joblib.delayed(multi_process)(a, args) for i, a in enumerate(anno)] | |
) | |
def get_arguments(): | |
parser = argparse.ArgumentParser(description="obtain final prediction by logits fusion") | |
parser.add_argument("--test_json_path", type=str, default='./data/CIHP/cascade_152_finetune/test.json') | |
parser.add_argument("--global_output_dir", type=str, | |
default='./data/CIHP/global/global_result-cihp-resnet101/global_output') | |
# parser.add_argument("--msrcnn_output_dir", type=str, | |
# default='./data/CIHP/cascade_152__finetune/msrcnn_result-cihp-resnet101/msrcnn_output') | |
parser.add_argument("--gt_output_dir", type=str, | |
default='./data/CIHP/cascade_152__finetune/gt_result-cihp-resnet101/gt_output') | |
parser.add_argument("--mask_output_dir", type=str, default='./data/CIHP/cascade_152_finetune/mask') | |
parser.add_argument("--save_dir", type=str, default='./data/CIHP/fusion_results/cihp-msrcnn_finetune') | |
return parser.parse_args() | |
if __name__ == '__main__': | |
args = get_arguments() | |
main(args) | |