# Copyright (c) Facebook, Inc. and its affiliates. import numpy as np from typing import List, Optional, Tuple import torch from detectron2.data.detection_utils import read_image from ..structures import DensePoseChartResult from .base import Boxes, Image from .densepose_results import DensePoseResultsVisualizer def get_texture_atlas(path: Optional[str]) -> Optional[np.ndarray]: if path is None: return None # Reading images like that downsamples 16-bit images to 8-bit # If 16-bit images are needed, we can replace that by cv2.imread with the # cv2.IMREAD_UNCHANGED flag (with cv2 we also need it to keep alpha channels) # The rest of the pipeline would need to be adapted to 16-bit images too bgr_image = read_image(path) rgb_image = np.copy(bgr_image) # Convert BGR -> RGB rgb_image[:, :, :3] = rgb_image[:, :, 2::-1] # Works with alpha channel return rgb_image class DensePoseResultsVisualizerWithTexture(DensePoseResultsVisualizer): """ texture_atlas: An image, size 6N * 4N, with N * N squares for each of the 24 body parts. It must follow the grid found at https://github.com/facebookresearch/DensePose/blob/master/DensePoseData/demo_data/texture_atlas_200.png # noqa For each body part, U is proportional to the x coordinate, and (1 - V) to y """ def __init__(self, texture_atlas, **kwargs): self.texture_atlas = texture_atlas self.body_part_size = texture_atlas.shape[0] // 6 assert self.body_part_size == texture_atlas.shape[1] // 4 def visualize( self, image_bgr: Image, results_and_boxes_xywh: Tuple[Optional[List[DensePoseChartResult]], Optional[Boxes]], ) -> Image: densepose_result, boxes_xywh = results_and_boxes_xywh if densepose_result is None or boxes_xywh is None: return image_bgr boxes_xywh = boxes_xywh.int().cpu().numpy() texture_image, alpha = self.get_texture() for i, result in enumerate(densepose_result): iuv_array = torch.cat((result.labels[None], result.uv.clamp(0, 1))) x, y, w, h = boxes_xywh[i] bbox_image = image_bgr[y : y + h, x : x + w] image_bgr[y : y + h, x : x + w] = self.generate_image_with_texture( texture_image, alpha, bbox_image, iuv_array.cpu().numpy() ) return image_bgr def get_texture(self): N = self.body_part_size texture_image = np.zeros([24, N, N, self.texture_atlas.shape[-1]]) for i in range(4): for j in range(6): texture_image[(6 * i + j), :, :, :] = self.texture_atlas[ N * j : N * (j + 1), N * i : N * (i + 1), : ] if texture_image.shape[-1] == 4: # Image with alpha channel alpha = texture_image[:, :, :, -1] / 255.0 texture_image = texture_image[:, :, :, :3] else: alpha = texture_image.sum(axis=-1) > 0 return texture_image, alpha def generate_image_with_texture(self, texture_image, alpha, bbox_image_bgr, iuv_array): I, U, V = iuv_array generated_image_bgr = bbox_image_bgr.copy() for PartInd in range(1, 25): x, y = np.where(I == PartInd) x_index = (U[x, y] * (self.body_part_size - 1)).astype(int) y_index = ((1 - V[x, y]) * (self.body_part_size - 1)).astype(int) part_alpha = np.expand_dims(alpha[PartInd - 1, y_index, x_index], -1) generated_image_bgr[I == PartInd] = ( generated_image_bgr[I == PartInd] * (1 - part_alpha) + texture_image[PartInd - 1, y_index, x_index] * part_alpha ) return generated_image_bgr.astype(np.uint8)