Spaces:
Runtime error
Runtime error
File size: 6,555 Bytes
ee21b96 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 |
# Unsupervised Cross-lingual Representation Learning at Scale (XLM-RoBERTa)
https://arxiv.org/pdf/1911.02116.pdf
# Larger-Scale Transformers for Multilingual Masked Language Modeling
https://arxiv.org/pdf/2105.00572.pdf
## What's New:
- June 2021: `XLMR-XL` AND `XLMR-XXL` models released.
## Introduction
`XLM-R` (`XLM-RoBERTa`) is a generic cross lingual sentence encoder that obtains state-of-the-art results on many cross-lingual understanding (XLU) benchmarks. It is trained on `2.5T` of filtered CommonCrawl data in 100 languages (list below).
Language | Language|Language |Language | Language
---|---|---|---|---
Afrikaans | Albanian | Amharic | Arabic | Armenian
Assamese | Azerbaijani | Basque | Belarusian | Bengali
Bengali Romanize | Bosnian | Breton | Bulgarian | Burmese
Burmese zawgyi font | Catalan | Chinese (Simplified) | Chinese (Traditional) | Croatian
Czech | Danish | Dutch | English | Esperanto
Estonian | Filipino | Finnish | French | Galician
Georgian | German | Greek | Gujarati | Hausa
Hebrew | Hindi | Hindi Romanize | Hungarian | Icelandic
Indonesian | Irish | Italian | Japanese | Javanese
Kannada | Kazakh | Khmer | Korean | Kurdish (Kurmanji)
Kyrgyz | Lao | Latin | Latvian | Lithuanian
Macedonian | Malagasy | Malay | Malayalam | Marathi
Mongolian | Nepali | Norwegian | Oriya | Oromo
Pashto | Persian | Polish | Portuguese | Punjabi
Romanian | Russian | Sanskrit | Scottish Gaelic | Serbian
Sindhi | Sinhala | Slovak | Slovenian | Somali
Spanish | Sundanese | Swahili | Swedish | Tamil
Tamil Romanize | Telugu | Telugu Romanize | Thai | Turkish
Ukrainian | Urdu | Urdu Romanize | Uyghur | Uzbek
Vietnamese | Welsh | Western Frisian | Xhosa | Yiddish
## Pre-trained models
Model | Description | #params | vocab size | Download
---|---|---|---|---
`xlmr.base` | XLM-R using the BERT-base architecture | 250M | 250k | [xlm.base.tar.gz](https://dl.fbaipublicfiles.com/fairseq/models/xlmr.base.tar.gz)
`xlmr.large` | XLM-R using the BERT-large architecture | 560M | 250k | [xlm.large.tar.gz](https://dl.fbaipublicfiles.com/fairseq/models/xlmr.large.tar.gz)
`xlmr.xl` | XLM-R (`layers=36, model_dim=2560`) | 3.5B | 250k | [xlm.xl.tar.gz](https://dl.fbaipublicfiles.com/fairseq/models/xlmr/xlmr.xl.tar.gz)
`xlmr.xxl` | XLM-R (`layers=48, model_dim=4096`) | 10.7B | 250k | [xlm.xxl.tar.gz](https://dl.fbaipublicfiles.com/fairseq/models/xlmr/xlmr.xxl.tar.gz)
## Results
**[XNLI (Conneau et al., 2018)](https://arxiv.org/abs/1809.05053)**
Model | average | en | fr | es | de | el | bg | ru | tr | ar | vi | th | zh | hi | sw | ur
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---
`roberta.large.mnli` _(TRANSLATE-TEST)_ | 77.8 | 91.3 | 82.9 | 84.3 | 81.2 | 81.7 | 83.1 | 78.3 | 76.8 | 76.6 | 74.2 | 74.1 | 77.5 | 70.9 | 66.7 | 66.8
`xlmr.large` _(TRANSLATE-TRAIN-ALL)_ | 83.6 | 89.1 | 85.1 | 86.6 | 85.7 | 85.3 | 85.9 | 83.5 | 83.2 | 83.1 | 83.7 | 81.5 | 83.7 | 81.6 | 78.0 | 78.1
`xlmr.xl` _(TRANSLATE-TRAIN-ALL)_ | 85.4 | 91.1 | 87.2 | 88.1 | 87.0 | 87.4 | 87.8 | 85.3 | 85.2 | 85.3 | 86.2 | 83.8 | 85.3 | 83.1 | 79.8 | 78.2 | 85.4
`xlmr.xxl` _(TRANSLATE-TRAIN-ALL)_ | 86.0 | 91.5 | 87.6 | 88.7 | 87.8 | 87.4 | 88.2 | 85.6 | 85.1 | 85.8 | 86.3 | 83.9 | 85.6 | 84.6 | 81.7 | 80.6
**[MLQA (Lewis et al., 2018)](https://arxiv.org/abs/1910.07475)**
Model | average | en | es | de | ar | hi | vi | zh
---|---|---|---|---|---|---|---|---
`BERT-large` | - | 80.2/67.4 | - | - | - | - | - | -
`mBERT` | 57.7 / 41.6 | 77.7 / 65.2 | 64.3 / 46.6 | 57.9 / 44.3 | 45.7 / 29.8| 43.8 / 29.7 | 57.1 / 38.6 | 57.5 / 37.3
`xlmr.large` | 70.7 / 52.7 | 80.6 / 67.8 | 74.1 / 56.0 | 68.5 / 53.6 | 63.1 / 43.5 | 69.2 / 51.6 | 71.3 / 50.9 | 68.0 / 45.4
`xlmr.xl` | 73.4 / 55.3 | 85.1 / 72.6 | 66.7 / 46.2 | 70.5 / 55.5 | 74.3 / 56.9 | 72.2 / 54.7 | 74.4 / 52.9 | 70.9 / 48.5
`xlmr.xxl` | 74.8 / 56.6 | 85.5 / 72.4 | 68.6 / 48.4 | 72.7 / 57.8 | 75.4 / 57.6 | 73.7 / 55.8 | 76.0 / 55.0 | 71.7 / 48.9
## Example usage
##### Load XLM-R from torch.hub (PyTorch >= 1.1):
```python
import torch
xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large')
xlmr.eval() # disable dropout (or leave in train mode to finetune)
```
##### Load XLM-R (for PyTorch 1.0 or custom models):
```python
# Download xlmr.large model
wget https://dl.fbaipublicfiles.com/fairseq/models/xlmr.large.tar.gz
tar -xzvf xlmr.large.tar.gz
# Load the model in fairseq
from fairseq.models.roberta import XLMRModel
xlmr = XLMRModel.from_pretrained('/path/to/xlmr.large', checkpoint_file='model.pt')
xlmr.eval() # disable dropout (or leave in train mode to finetune)
```
##### Apply sentence-piece-model (SPM) encoding to input text:
```python
en_tokens = xlmr.encode('Hello world!')
assert en_tokens.tolist() == [0, 35378, 8999, 38, 2]
xlmr.decode(en_tokens) # 'Hello world!'
zh_tokens = xlmr.encode('你好,世界')
assert zh_tokens.tolist() == [0, 6, 124084, 4, 3221, 2]
xlmr.decode(zh_tokens) # '你好,世界'
hi_tokens = xlmr.encode('नमस्ते दुनिया')
assert hi_tokens.tolist() == [0, 68700, 97883, 29405, 2]
xlmr.decode(hi_tokens) # 'नमस्ते दुनिया'
ar_tokens = xlmr.encode('مرحبا بالعالم')
assert ar_tokens.tolist() == [0, 665, 193478, 258, 1705, 77796, 2]
xlmr.decode(ar_tokens) # 'مرحبا بالعالم'
fr_tokens = xlmr.encode('Bonjour le monde')
assert fr_tokens.tolist() == [0, 84602, 95, 11146, 2]
xlmr.decode(fr_tokens) # 'Bonjour le monde'
```
##### Extract features from XLM-R:
```python
# Extract the last layer's features
last_layer_features = xlmr.extract_features(zh_tokens)
assert last_layer_features.size() == torch.Size([1, 6, 1024])
# Extract all layer's features (layer 0 is the embedding layer)
all_layers = xlmr.extract_features(zh_tokens, return_all_hiddens=True)
assert len(all_layers) == 25
assert torch.all(all_layers[-1] == last_layer_features)
```
## Citation
```bibtex
@article{conneau2019unsupervised,
title={Unsupervised Cross-lingual Representation Learning at Scale},
author={Conneau, Alexis and Khandelwal, Kartikay and Goyal, Naman and Chaudhary, Vishrav and Wenzek, Guillaume and Guzm{\'a}n, Francisco and Grave, Edouard and Ott, Myle and Zettlemoyer, Luke and Stoyanov, Veselin},
journal={arXiv preprint arXiv:1911.02116},
year={2019}
}
```
```bibtex
@article{goyal2021larger,
title={Larger-Scale Transformers for Multilingual Masked Language Modeling},
author={Goyal, Naman and Du, Jingfei and Ott, Myle and Anantharaman, Giri and Conneau, Alexis},
journal={arXiv preprint arXiv:2105.00572},
year={2021}
}
```
|