File size: 7,650 Bytes
ee21b96
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

import tempfile
import unittest
from pathlib import Path
from typing import Any, Dict, Sequence

import fairseq.data.indexed_dataset as indexed_dataset
import fairseq.options
import fairseq.tasks.online_backtranslation as obt
import torch
from tests import utils


def mk_sample(tokens: Sequence[int], batch_size: int = 2) -> Dict[str, Any]:
    batch = torch.stack([torch.tensor(tokens, dtype=torch.long)] * batch_size)
    sample = {
        "net_input": {
            "src_tokens": batch,
            "prev_output_tokens": batch,
            "src_lengths": torch.tensor([len(tokens)] * batch_size, dtype=torch.long),
        },
        "target": batch[:, 1:],
    }
    return sample


def mk_dataset(num_samples: int, max_len: int, output: Path):
    output.parent.mkdir(exist_ok=True)
    idx = indexed_dataset.IndexedDatasetBuilder(str(output))
    data = torch.randint(5, 100, (num_samples, max_len))
    lengths = torch.randint(3, max_len, (num_samples,))
    for d, l in zip(data, lengths):
        d[0] = 0
        idx.add_item(d[:l])
    idx.finalize(output.with_suffix(".idx"))
    assert output.exists()
    assert output.with_suffix(".idx").exists()


class OnlineBacktranslationTest(unittest.TestCase):

    tmp_dir = Path(tempfile.mkdtemp(suffix="OnlineBacktranslationTest"))

    @classmethod
    def obt_task(
        cls, languages: Sequence[str], data: Path = None, language_mapping: str = None
    ):
        dict_path = cls.tmp_dir / "dict.txt"
        if not dict_path.exists():
            dictionary = utils.dummy_dictionary(100)
            dictionary.save(str(dict_path))

        if data is not None:
            (data / "dict.txt").write_text(dict_path.read_text())
        else:
            data = cls.tmp_dir
        assert len(languages) >= 2

        kwargs = {
            "arch": "transformer",
            # --max-sentences=1 for better predictability of batches
            "max_sentences": 1,
            # Use characteristics dimensions
            "encoder_layers": 3,
            "encoder_embed_dim": 12,
            "encoder_ffn_embed_dim": 14,
            "encoder_attention_heads": 4,
            "decoder_layers": 3,
            "decoder_embed_dim": 12,
            "decoder_output_dim": 12,
            "decoder_ffn_embed_dim": 14,
            "decoder_attention_heads": 4,
            # Disable dropout so we have comparable tests.
            "dropout": 0,
            "attention_dropout": 0,
            "activation_dropout": 0,
            "encoder_layerdrop": 0,
        }

        args = fairseq.options.get_args(
            data,
            task="online_backtranslation",
            mono_langs=",".join(languages),
            valid_lang_pairs=f"{languages[0]}-{languages[1]}",
            tokens_per_sample=256,
            language_mapping=language_mapping,
            **kwargs,
        )
        task = obt.OnlineBackTranslationTask.setup_task(args)
        # we need to build the model to have the correct dictionary
        model = task.build_model(task.args)
        return task, model

    def tmp_path(self, test_case: str) -> Path:
        return Path(tempfile.mkdtemp(test_case, dir=self.tmp_dir))

    def test_lang_tokens(self):
        task, model = self.obt_task(["en", "ro", "zh"])
        assert obt._lang_token("en") in task.dictionary
        assert obt._lang_token("ro") in task.dictionary
        assert obt._lang_token("zh") in task.dictionary

        en_bos = obt._lang_token_index(task.common_dict, "en")
        assert "en" == task.common_dict[en_bos].strip("_")
        zh_bos = obt._lang_token_index(task.common_dict, "zh")
        assert "zh" == task.common_dict[zh_bos].strip("_")
        zh_sample = mk_sample([zh_bos, 16, 14, 12, 10])

        # we expect to receive the bos token for translation
        assert task.get_bos_token_from_sample(zh_sample) == en_bos

    def test_backtranslate_sample(self):
        task, model = self.obt_task(["en", "ro", "zh"])

        en_bos = obt._lang_token_index(task.common_dict, "en")
        zh_bos = obt._lang_token_index(task.common_dict, "zh")
        sample = mk_sample([zh_bos, 16, 14, 12, 10])

        task.backtranslate_sample(sample, "zh", "en")
        target_zh = list(sample["target"][0])
        assert target_zh == [16, 14, 12, 10]  # original zh sentence
        generated_en = sample["net_input"]["src_tokens"][0]
        assert generated_en[0] == en_bos

    def test_train_dataset(self):
        data = self.tmp_path("test_train_dataset")
        mk_dataset(20, 10, data / "en" / "train.bin")
        mk_dataset(10, 10, data / "zh" / "train.bin")
        task, model = self.obt_task(["en", "zh"], data)
        task.load_dataset("train")

        en_bos = obt._lang_token_index(task.common_dict, "en")
        zh_bos = obt._lang_token_index(task.common_dict, "zh")

        train = task.datasets["train"]
        train.ordered_indices()
        train.prefetch([0, 19])
        sample_0 = train[0]
        sample_19 = train[19]
        self.assertEqual(
            set(sample_0.keys()), {"en-BT", "en-DENOISE", "zh-BT", "zh-DENOISE"}
        )
        for sample in (sample_0, sample_19):
            self.assertEqual(sample["en-BT"]["source"][0], en_bos)
            # bt target isn't ready to look at.
            self.assertEqual(sample["en-DENOISE"]["source"][0], en_bos)
            # TODO What could we check on the target side ?

        for i in range(10):
            # Zh dataset is shorter, and is wrapped around En dataset.
            train.prefetch([i, i + 10])
            self.assertEqual(
                list(train[i]["zh-DENOISE"]["source"]),
                list(train[i + 10]["zh-DENOISE"]["source"]),
            )
            self.assertEqual(train[i]["zh-DENOISE"]["source"][0].item(), zh_bos)

        # Sorted by increasing len
        self.assertLess(
            len(sample_0["en-BT"]["source"]), len(sample_19["en-BT"]["source"])
        )

    def test_valid_dataset(self):
        data = self.tmp_path("test_valid_dataset")
        mk_dataset(10, 21, data / "valid.en-zh.en.bin")
        mk_dataset(10, 21, data / "valid.en-zh.zh.bin")

        task, model = self.obt_task(["en", "zh"], data)
        valid = task.load_dataset("valid")
        en_bos = obt._lang_token_index(task.common_dict, "en")

        assert valid is not None
        valid.prefetch(range(10))
        sample_0 = valid[0]
        sample_9 = valid[9]
        self.assertEqual(sample_0["id"], 0)
        self.assertEqual(sample_9["id"], 9)
        self.assertEqual(sample_0["source"][0], en_bos)
        self.assertEqual(sample_9["source"][0], en_bos)
        # TODO: could we test the target side ?

    def assertFnMatch(self, fn, values):
        for x, y in values.items():
            fn_x = fn(x)
            self.assertEqual(fn_x, y, f"Fn has wrong value: fn({x}) = {fn_x} != {y}")

    def test_piecewise_linear_fn(self):
        self.assertFnMatch(
            obt.PiecewiseLinearFn.from_string("1.0"), {0: 1, 100: 1, 500: 1, 1000: 1}
        )
        self.assertFnMatch(
            obt.PiecewiseLinearFn.from_string("0:1,1000:0"),
            {0: 1, 500: 0.5, 1000: 0, 2000: 0},
        )
        self.assertFnMatch(
            obt.PiecewiseLinearFn.from_string("0:0,1000:1"),
            {0: 0, 500: 0.5, 1000: 1, 2000: 1},
        )
        self.assertFnMatch(
            obt.PiecewiseLinearFn.from_string("0:0,1000:1,2000:0"),
            {0: 0, 500: 0.5, 1000: 1, 1500: 0.5, 2000: 0, 3000: 0},
        )