Spaces:
Runtime error
Runtime error
File size: 5,097 Bytes
ee21b96 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 |
# Copyright 2022 The OFA-Sys Team.
# All rights reserved.
# This source code is licensed under the Apache 2.0 license
# found in the LICENSE file in the root directory.
import torch
from dataclasses import dataclass, field
import json
import logging
from typing import Optional
from argparse import Namespace
import Levenshtein
from fairseq import metrics, utils
from fairseq.tasks import register_task
from tasks.ofa_task import OFATask, OFAConfig
from data.mm_data.ocr_dataset import OcrDataset
from data.file_dataset import FileDataset
EVAL_BLEU_ORDER = 4
logger = logging.getLogger(__name__)
@dataclass
class OcrConfig(OFAConfig):
is_document: bool = field(
default=False, metadata={"help": "enable special resizing for document data."}
)
eval_args: Optional[str] = field(
default="{}",
metadata={
"help": 'generation args, e.g., \'{"beam": 4, "lenpen": 0.6}\', as JSON string'
},
)
@register_task("ocr", dataclass=OcrConfig)
class OcrTask(OFATask):
def __init__(self, cfg: OcrConfig, src_dict, tgt_dict):
super().__init__(cfg, src_dict, tgt_dict)
def load_dataset(self, split, epoch=1, combine=False, **kwargs):
paths = self.cfg.data.split(",")
assert len(paths) > 0
if split == 'train':
file_path = paths[(epoch - 1) % (len(paths) - 1)]
else:
file_path = paths[-1]
dataset = FileDataset(file_path, self.cfg.selected_cols)
self.datasets[split] = OcrDataset(
split,
dataset,
self.bpe,
self.src_dict,
self.tgt_dict,
max_src_length=self.cfg.max_src_length,
max_tgt_length=self.cfg.max_tgt_length,
patch_image_size=self.cfg.patch_image_size,
imagenet_default_mean_and_std=self.cfg.imagenet_default_mean_and_std,
is_document=self.cfg.is_document,
)
def build_model(self, cfg):
model = super().build_model(cfg)
gen_args = json.loads(self.cfg.eval_args)
self.sequence_generator = self.build_generator([model], Namespace(**gen_args))
return model
def valid_step(self, sample, model, criterion):
loss, sample_size, logging_output = criterion(model, sample)
model.eval()
hyps, refs = self._inference(self.sequence_generator, sample, model)
acc = [1.0 if hyp == ref else 0.0 for hyp, ref in zip(hyps, refs)]
distance = [
Levenshtein.distance(hyp, ref) / max(len(hyp), len(ref))
for hyp, ref in zip(hyps, refs)
]
logging_output["_acc_sum"] = sum(acc)
logging_output["_acc_cnt"] = len(acc)
logging_output["_dist_sum"] = sum(distance)
logging_output["_dist_cnt"] = len(distance)
return loss, sample_size, logging_output
def reduce_metrics(self, logging_outputs, criterion):
super().reduce_metrics(logging_outputs, criterion)
def sum_logs(key):
result = sum(log.get(key, 0) for log in logging_outputs)
if torch.is_tensor(result):
result = result.cpu()
return result
def compute_acc(meters):
score = meters["_acc_sum"].sum / meters["_acc_cnt"].sum
score = score if isinstance(score, float) else score.item()
return round(score, 4)
def compute_ned(meters):
score = meters["_dist_sum"].sum / meters["_dist_cnt"].sum
score = score if isinstance(score, float) else score.item()
score = 1.0 - score
return round(score, 4)
if sum_logs("_acc_cnt") > 0:
metrics.log_scalar("_acc_sum", sum_logs("_acc_sum"))
metrics.log_scalar("_acc_cnt", sum_logs("_acc_cnt"))
metrics.log_derived("acc", compute_acc)
metrics.log_scalar("_dist_sum", sum_logs("_dist_sum"))
metrics.log_scalar("_dist_cnt", sum_logs("_dist_cnt"))
metrics.log_derived("ned", compute_ned)
def _inference(self, generator, sample, model):
def decode(toks, escape_unk=False):
s = self.tgt_dict.string(
toks.int().cpu(),
unk_string=("UNKNOWNTOKENINREF" if escape_unk else "UNKNOWNTOKENINHYP"),
)
if self.bpe:
s = self.bpe.decode(s)
return s
gen_out = self.inference_step(generator, [model], sample)
hyps, refs = [], []
for i in range(len(gen_out)):
decode_tokens = decode(gen_out[i][0]["tokens"])
hyps.append(decode_tokens.strip().replace(" ", ""))
refs.append(
decode(
utils.strip_pad(sample["target"][i], self.tgt_dict.pad()),
escape_unk=True,
)
.strip()
.replace(" ", "")
)
if self.cfg.eval_print_samples:
logger.info("example hypothesis: " + hyps[0])
logger.info("example reference: " + ' && '.join(refs[0]))
return hyps, refs |