Spaces:
Runtime error
Runtime error
File size: 4,130 Bytes
ee21b96 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 |
# Copyright 2022 The OFA-Sys Team.
# All rights reserved.
# This source code is licensed under the Apache 2.0 license
# found in the LICENSE file in the root directory.
import logging
import warnings
import torch
import numpy as np
from data import data_utils
from data.ofa_dataset import OFADataset
logger = logging.getLogger(__name__)
warnings.filterwarnings("ignore", "(Possibly )?corrupt EXIF data", UserWarning)
def collate(samples, pad_idx, eos_idx):
if len(samples) == 0:
return {}
def merge(key):
return data_utils.collate_tokens(
[s[key] for s in samples],
pad_idx,
eos_idx=eos_idx,
)
src_tokens = merge("source")
src_lengths = torch.LongTensor([s["source"].ne(pad_idx).long().sum() for s in samples])
prev_output_tokens = None
target = None
if samples[0].get("target", None) is not None:
target = merge("target")
tgt_lengths = torch.LongTensor(
[s["target"].ne(pad_idx).long().sum() for s in samples]
)
ntokens = tgt_lengths.sum().item()
if samples[0].get("prev_output_tokens", None) is not None:
prev_output_tokens = merge("prev_output_tokens")
else:
ntokens = src_lengths.sum().item()
target_strs = np.array([s["target_str"] for s in samples])
batch = {
"nsentences": len(samples),
"ntokens": ntokens,
"net_input": {
"src_tokens": src_tokens,
"src_lengths": src_lengths,
"prev_output_tokens": prev_output_tokens
},
"target": target,
"target_strs": target_strs
}
return batch
class SummaryDataset(OFADataset):
def __init__(
self,
split,
dataset,
bpe,
src_dict,
tgt_dict=None,
code_dict_size=8192,
num_bins=1000,
max_src_length=512,
max_tgt_length=128,
noise_ratio=0.0
):
super().__init__(split, dataset, bpe, src_dict, tgt_dict)
self.max_src_length = max_src_length
self.max_tgt_length = max_tgt_length
self.code_dict_size = code_dict_size
self.num_bins = num_bins
self.noise_ratio = noise_ratio
if type(bpe).__name__ == 'GPT2BPE':
self.prompt = ' what is the summary of article " {} "?'
elif type(bpe).__name__ == 'BertBPE':
self.prompt = "{} 请用一个句子简单总结上文:"
def __getitem__(self, index):
source, target = self.dataset[index]
target_str = target.lower()
source = self.pre_caption(source, max_words=self.max_src_length)
target = self.pre_caption(target, max_words=self.max_tgt_length)
source = source.replace('<unk>', 'unk')
target = target.replace('<unk>', 'unk')
src_item = self.encode_text(
self.prompt.format(source),
length=self.max_src_length
)
tgt_item = self.encode_text('{}'.format(target))
noise_tgt_item = self.add_noise_to_tgt(tgt_item.clone(), self.noise_ratio)
src_item = torch.cat([self.bos_item, src_item, self.eos_item])
target_item = torch.cat([tgt_item, self.eos_item])
prev_output_item = torch.cat([self.bos_item, noise_tgt_item])
example = {
"source": src_item,
"target": target_item,
"prev_output_tokens": prev_output_item,
"target_str": target_str
}
return example
def add_noise_to_tgt(self, target, p):
noise_indices = torch.FloatTensor(target.size(0)).uniform_() < p
target[noise_indices] = torch.randint(
4, len(self.src_dict) - self.code_dict_size - self.num_bins, size=(noise_indices.sum(),)
)
return target
def collater(self, samples, pad_to_length=None):
"""Merge a list of samples to form a mini-batch.
Args:
samples (List[dict]): samples to collate
Returns:
dict: a mini-batch containing the data of the task
"""
return collate(samples, pad_idx=self.pad, eos_idx=self.eos) |