File size: 4,997 Bytes
ee21b96
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

import math
from dataclasses import dataclass, field

import torch
import torch.nn.functional as F

from fairseq import metrics, utils
from fairseq.criterions import FairseqCriterion, register_criterion
from fairseq.dataclass import ChoiceEnum, FairseqDataclass


_EPSILON = torch.finfo(torch.float32).eps
TARGET_DIST_NORM_CHOICES = ChoiceEnum(["none", "minmax"])


@dataclass
class KLDivergenceRerankingCriterionConfig(FairseqDataclass):
    target_dist_norm: TARGET_DIST_NORM_CHOICES = field(
        default="none",
        metadata={"help": "method to normalize the range of target scores"},
    )
    temperature: float = field(
        default=1.0,
        metadata={"help": "temperature in softmax for target distributions"},
    )
    forward_batch_size: int = field(
        default=32,
        metadata={
            "help": "number of hypotheses per batch for model forward (set a value smaller than --mt-beam to avoid OOM when training with a large beam size)"
        },
    )


@register_criterion(
    "kl_divergence_rereanking", dataclass=KLDivergenceRerankingCriterionConfig
)
class KLDivergenceRerankingCriterion(FairseqCriterion):
    def __init__(
        self, task, target_dist_norm, temperature, forward_batch_size,
    ):
        super().__init__(task)
        self.target_dist_norm = target_dist_norm
        self.temperature = temperature
        self.forward_batch_size = forward_batch_size

    def forward(self, model, sample, reduce=True):
        """Compute the loss for the given sample.

        Returns a tuple with three elements:
        1) the loss
        2) the sample size, which is used as the denominator for the gradient
        3) logging outputs to display while training
        """

        sample_size = sample["id"].numel()
        assert sample_size % self.task.cfg.mt_beam == 0, (
            f"sample_size ({sample_size}) cannot be divided by beam size ({self.task.cfg.mt_beam})."
            f"Please set --required-batch-size-multiple={self.task.cfg.mt_beam}."
        )

        # split into smaller batches for model forward
        batch_out = []
        for i in range(0, sample_size, self.forward_batch_size):
            j = min(i + self.forward_batch_size, sample_size)

            out = model(
                src_tokens=sample["net_input"]["src_tokens"][i:j, :],
                src_lengths=sample["net_input"]["src_lengths"][i:j],
            )

            batch_out.append(
                model.sentence_forward(out, sample["net_input"]["src_tokens"][i:j, :])
            )

        batch_out = torch.cat(batch_out, dim=0).view(
            self.task.cfg.mt_beam, sample_size // self.task.cfg.mt_beam, -1
        )  # T x B x C
        if model.joint_classification == "sent":
            batch_out = model.joint_forward(batch_out)
        scores = model.classification_forward(batch_out.view(sample_size, 1, -1)).view(
            -1, self.task.cfg.mt_beam
        )  # input: B x T x C

        loss = self.compute_kl_loss(
            scores, sample["target"][:, 0].view(-1, self.task.cfg.mt_beam)
        )

        sample_size = sample_size // self.task.cfg.mt_beam

        logging_output = {
            "loss": loss.detach(),
            "ntokens": sample["ntokens"],
            "nsentences": sample_size * self.task.cfg.mt_beam,
            "sample_size": sample_size,
            "scores": scores.detach(),
        }

        return loss, sample_size, logging_output

    def compute_kl_loss(self, logits, target):
        norm_target = target
        if self.target_dist_norm == "minmax":
            min_v = torch.min(target, 1, keepdim=True).values
            max_v = torch.max(target, 1, keepdim=True).values
            norm_target = (target - min_v) / (max_v - min_v + _EPSILON)

        target_dist = F.softmax(
            norm_target / self.temperature, dim=-1, dtype=torch.float32
        )
        model_dist = F.log_softmax(logits, dim=-1, dtype=torch.float32)
        loss = -(target_dist * model_dist - target_dist * target_dist.log()).sum()
        return loss

    @staticmethod
    def reduce_metrics(logging_outputs) -> None:
        """Aggregate logging outputs from data parallel training."""
        loss_sum = utils.item(sum(log.get("loss", 0) for log in logging_outputs))

        sample_size = utils.item(
            sum(log.get("sample_size", 0) for log in logging_outputs)
        )

        loss = loss_sum / sample_size / math.log(2)
        metrics.log_scalar("loss", loss, sample_size, round=3)

    @staticmethod
    def logging_outputs_can_be_summed() -> bool:
        """
        Whether the logging outputs returned by `forward` can be summed
        across workers prior to calling `reduce_metrics`. Setting this
        to True will improves distributed training speed.
        """
        return True